Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (104)
  • Open Access

    ARTICLE

    Acoustic Potential Generation under Acoustic Standing Waves Modeling using CFD Software

    C. S. Iorio1, C. Perfetti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 27-48, 2015, DOI:10.3970/fdmp.2015.011.027

    Abstract In the past few years, modeling of the Acoustic StandingWaves (ASW) phenomena has become a topic of great interest due to its theoretical connections with particle/cells manipulation techniques, which represent important tools in the biotechnology field. The present paper proposes a model based on the use of moving wall boundary conditions coupled with a viscous compressible fluid in a square channel. This model successfully achieved the generation of ASWs in the square cross-section for several resonance frequencies; the corresponding acoustic potential for the fundamental resonant mode and several harmonics have also been calculated and are More >

  • Open Access

    ARTICLE

    Acoustoelastic Effects on Borehole Flexural Waves in Anisotropic Formations under Horizontal Terrestrial Stress Field

    Ping’en Li1,2, Xianyue Su1,3

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 173-194, 2008, DOI:10.3970/cmc.2008.008.173

    Abstract Applying the Stroh theory and based on the works of Hwu and Ting (1989), the complex function solution of stress and displacement fields around an open borehole in intrinsic anisotropic formation under horizontal terrestrial stress field is obtained. For cross-dipole flexural wave propagation along borehole axis, using the perturbation method, the acoustoelastic equation describing the relation between the alteration in phase velocity and terrestrial stress as well as formation intrinsic anisotropy is derived. At last, the numerical examples are provided for both the cases of fast and slow formation where the symmetry axis of a… More >

  • Open Access

    ARTICLE

    Characteristic of Waves in A Multi-Walled Carbon Nanotube

    G. Q. Xie1,2,3, X. Han2, S. Y. Long3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 1-12, 2007, DOI:10.3970/cmc.2007.006.001

    Abstract A multi-walled carbon nanotube is modeled as a multiple-elastic cylindrical structure. The numerical-analytical method is adopted to analyze the characteristics of harmonic waves propagating along an anisotropic carbon nanotube. Each wall of the carbon nanotube is divided into three-nodal-line layer elements. The deflections of two adjacent tubes are coupled through the van der Waals. The governing equation of element is obtained from Hamilton's principle. A set of system equation of dynamics equilibrium for the entire structure is obtained by the assembling of all the elements. From solution of the eigenvalue equations, the dispersive characteristics, group More >

  • Open Access

    ARTICLE

    Effect of Rotation on the Propagation of Waves in Hollow Poroelastic Circular Cylinder with Magnetic Field

    A.M. Farhan1, 2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 129-156, 2017, DOI:10.3970/cmc.2017.053.133

    Abstract Employing Biot’s theory of wave propagation in liquid saturated porous media, the effect of rotation and magnetic field on wave propagation in a hollow poroelastic circular of infinite extent are investigated. An exact closed form solution is presented. General frequency equations for propagation of poroelastic cylinder are obtained when the boundaries are stress free. The frequencies are calculated for poroelastic cylinder for different values of magnetic field and rotation. Numerical results are given and illustrated graphically. The results indicate that the effect of rotation, and magnetic field are very pronounced. Such a model would be More >

  • Open Access

    ARTICLE

    Rotational Effects on Magneto-Thermoelastic Stoneley, Love and Rayleigh Waves in Fibre-Reinforced Anisotropic General Viscoelastic Media of Higher Order

    A. M. Abd-Alla1, 2, S. M. Abo-Dahab1, 3, Aftab Khan4

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 49-72, 2017, DOI:10.3970/cmc.2017.053.052

    Abstract In this paper, we investigated the propagation of the rmo elastic surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order ofnth order, including time rate of strain under the influence of rotation.The general surface wave speed is derived to study the effects of rotation and thermal on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Our results for viscoelastic of order zero are well More >

  • Open Access

    ARTICLE

    Dispersion of Axisymmetric Longitudinal Waves in A Bi-Material Compound Solid Cylinder Made of Viscoelastic Materials

    S.D. Akbarov1,2, T. Kocal3, T. Kepceler1

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 105-143, 2016, DOI:10.3970/cmc.2016.051.105

    Abstract The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials. The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics. The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution. Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators. The influence of the viscosity of the materials… More >

  • Open Access

    ARTICLE

    Reflection of PlaneWaves from Electro-magneto-thermoelastic Half-space with a Dual-Phase-Lag Model

    A. M. Abd-Alla1,2,3, Mohamed I. A. Othman1,4, S. M. Abo-Dahab1,5

    CMC-Computers, Materials & Continua, Vol.51, No.2, pp. 63-79, 2016, DOI:10.3970/cmc.2016.051.063

    Abstract The aim of this paper is to study the reflection of plane harmonic waves from a semi-infinite elastic solid under the effect of magnetic field in a vacuum. The expressions for the reflection coefficients, which are the relations of the amplitudes of the reflected waves to the amplitude of the incident waves, are obtained. Similarly, the reflection coefficient ratio variations with the angle of incident under different conditions are shown graphically. Comparisons are made with the results predicted by the dual-phase-lag model and Lord-Shulman theory in the presence and absence of magnetic field. More >

  • Open Access

    ARTICLE

    Guided Waves in Functionally Graded Rods with Rectangular Cross-Section under Initial Stress

    Xiaoming Zhang1, Jiangong Yu1,2, Min Zhang1, Dengpan Zhang1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 163-179, 2015, DOI:10.3970/cmc.2015.048.163

    Abstract The characteristics of the guided waves propagation in functionally graded rods with rectangular cross-section (finite width and height) under initial stress are investigated in this paper based on Biot’s theory of incremental deformation. An extended orthogonal polynomial approach is present to solve the coupled wave equations with variable coefficients. By comparisons with the available results of a rectangular aluminum rod, the validity of the present approach is illustrated. The dispersion curves and displacement profiles of various rectangular functionally graded rods are calculated to reveal the wave characteristics, and the effects of different width to height More >

  • Open Access

    ARTICLE

    Effect of An Initial Stress on SH-Type GuidedWaves Propagating in a Piezoelectric Layer Bonded on A Piezomagnetic Substrate

    Guoquan Nie1,2, Jinxi Liu1, Ming Li1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 133-145, 2015, DOI:10.3970/cmc.2015.048.133

    Abstract Propagation of SH-type guided waves in a layered structure with an invariant initial stress is studied, where a piezoelectric thin layer is perfectly bonded on a piezomagnetic substrate. Both the layer and the substrate possess transversely isotropic property. The dispersion relations of SH waves are obtained for four kinds of different electro-magnetic boundary conditions. The effects of initial stress, thickness ratio and electro-magnetic boundary conditions on the propagation behaviors are analyzed in detail. The numerical results show that: 1) The positive initial stresses make the phase velocity increasing, while the negative initial stresses decrease the More >

  • Open Access

    ARTICLE

    Analysis of Elastic-PlasticWaves in a Thin-Walled Tube By a Novel Lie-Group Differential Algebraic Equations Method

    Chein-Shan Liu1, Satya N. Atluri2

    CMC-Computers, Materials & Continua, Vol.41, No.1, pp. 1-36, 2014, DOI:10.3970/cmc.2014.041.001

    Abstract In this paper, we adopt the viewpoint of a nonlinear complementarity problem (NCP) to derive an index-one differential algebraic equations (DAEs) system for the problem of elastic-plastic wave propagation in an elastic-plastic solid undergoing small deformations. This is achieved by recasting the pointwise complementary trio in the elastic-plastic constitutive equations into an algebraic equation through the Fischer-Burmeister NCP-function. Then, for an isotropicallyhardening/ softening material under prescribed impulse loadings on a thin-walled tube with combined axial-torsional stresses, we can develop a novel algorithm based on the Lie-group differential algebraic equations (LGDAE) method to iteratively solve the More >

Displaying 91-100 on page 10 of 104. Per Page