Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (287)
  • Open Access

    ARTICLE

    AdaBoosting Neural Network for Short-Term Wind Speed Forecasting Based on Seasonal Characteristics Analysis and Lag Space Estimation

    Haijian Shao1, 2, Xing Deng1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 277-293, 2018, DOI:10.3970/cmes.2018.114.277

    Abstract High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics. Randomness, intermittent and nonstationary usually cause the portion problem of the wind speed forecasting. Seasonal characteristics of wind speed means that its feature distribution is inconsistent. This typically results that the persistence of excitation for modeling can not be guaranteed, and may severely reduce the possibilities of high precise forecasting model. In this paper, we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed. (1)… More >

  • Open Access

    ABSTRACT

    Dynamic Analysis and Aeroelastic Stability Analysis of Large Composite Wind Turbine Blades

    Wei LIU, Jiacong YIN, Pu CHEN, Xianyue SU

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.4, pp. 127-128, 2011, DOI:10.3970/icces.2011.017.127

    Abstract In this paper, parametric modeling technique is employed to fast build the three-dimensional finite element shell model of a preliminarily designed large composite wind turbine blade, which is subsequently used in the dynamic analysis and static elastic aeroelastic stability analysis of the blade. In the dynamic analysis, natural frequencies and corresponding modal shapes are obtained for the blade in the case of being still as well as being rotating with rated revolution. For the rotating blade, the stress stiffening effect and spin-softening effect due to the centrifugal forces are taken into account. The static elastic… More >

  • Open Access

    ABSTRACT

    IRBFEs for the numerical solution of steady incompressible flows

    D.-A. An-Vo, N. Mai-Duy, T. Tran-Cong

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 87-88, 2011, DOI:10.3970/icces.2011.016.087

    Abstract In this paper, we develop a control-volume technique based on 2-node integrated-radial-basis-function elements (IRBFEs) for the numerical solution of steady incompressible flows governed by the stream function-vorticity formulation. The fluid domain is discretised by a Cartesian grid from which non-overlapping rectangular control- volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle-point rule. The convection term is effectively treated by the upwind scheme with deferred correction strategy. Instead of using conventional low-order polynomials, all physical quantities at the interfaces are presently estimated More >

  • Open Access

    ABSTRACT

    Three-Dimensional Analysis of Stress Pattern within Salt-Base Formation and Integrated Method for Design of Mud-Weight Window

    Xinpu Shen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 83-84, 2011, DOI:10.3970/icces.2011.016.083

    Abstract In practice, the mud-weight window (MWW) of a given wellbore can be designed with either two-dimensional (2D) analytical software or three-dimensional (3D) numerical finite element (FE) software. The advantage of 2D analytical tools is that they are highly efficient. Their major disadvantage is that several assumptions are adopted with the input data. These assumptions may not be accurate enough for subsalt wells. The advantage of the 3D numerical method is that it can accurately calculate the initial geo-stress field with a 3D FE model. Its major disadvantage is that it is not as efficient as… More >

  • Open Access

    ABSTRACT

    A Case Study of Mud-Weight Design with Finite Element Method for Subsalt Wells

    X.P. Shen, A. Diaz, T. Sheehy ,

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 73-74, 2011, DOI:10.3970/icces.2011.016.073

    Abstract This paper presents a case study for the design of a mud-weight window (MWW) with three-dimensional (3D) finite-element (FE) tools for subsalt wells. The trajectory of the target well penetrates a 20,000-ft thick salt body.

    The numerical solution of the MWW for the target wellbore consists two parts: the shear failure gradient (SFG) and the fracture gradient (FG). Because the pore pressure and material distributions are nonuniform, the calculations of SFG and FG must be performed with submodeling techniques for a given depth point at a smaller local scale. A numerical scheme has been proposed… More >

  • Open Access

    ABSTRACT

    A Computational Framework for Structural and Fatigue Analysis of a 5MW Wind Turbine Blade Under Wind Loads

    Shunhua Chen1,*, Shinobu Yoshimura1, Kaworu Yodo2, Naoto Mitsume1, Yasunori Yusa3, Tomonori Yamada1, Chisachi Kato4, Shori Orimo4, Yoshinobu Yamade5, Akiyoshi Iida6

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 60-60, 2019, DOI:10.32604/icces.2019.05361

    Abstract With the pressing requirement of wind energy capacity, the wind turbine blade size has been getting larger and larger in recent decades. For such a large-size blade, it is of prime importance to accurately evaluate the mechanical response under various wind loading conditions. In this work, we present a computational framework to achieve this end. Firstly, a finite element model for a 5MW blade is established according to the well-known NREL report. A composite laminated element is adopted to describe the blade structure. The effectiveness of this model is validated by means of eigenfrequency analysis.… More >

  • Open Access

    ABSTRACT

    Development of Large-Scale Finite Element Solver for Wind Turbine Blade Structure Using Balancing Domain Decomposition Methods

    Yasunori Yusa1,*, Tomoshi Miyamura2, Tomonori Yamada3, Shinobu Yoshimura3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 58-58, 2019, DOI:10.32604/icces.2019.05231

    Abstract In a wind turbine blade, laminated plates consisting of fiber reinforced plastic materials are generally used due to its high specific strength. We have been developing a large-scale finite element solver to analyze the wind turbine blade structure. For such a structure, the laminated finite element is frequently used in modeling. Each laminated finite element has multiple layers, each of which is an orthotropic body in order to model the layered fiber reinforced materials with different fiber directions. Also, since a realistic wind turbine blade structure generally requires a large number of finite elements for… More >

  • Open Access

    ABSTRACT

    The winding road from QNDE to SHM and beyond

    Jan D. Achenbach1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.3, pp. 87-88, 2009, DOI:10.3970/icces.2009.012.087

    Abstract A significant limitation of NDE became apparent in the sixties with the advent of fracture mechanics as a major consideration for the determination of structural safety. Fracture mechanics requires quantitative information that has to be obtained from non-destructive testing procedures. The 1970's mark the start of research and development to achieve quantitative capability, and adding the Q to NDE. Since that time significant advances have been made of the methods of quantitative non-destructive evaluation that are the basis of the diagnostics part of structural health management, including sensor development, new techniques such as laser-based ultrasonics,… More >

  • Open Access

    ABSTRACT

    Numerical Prediction of the Ocean Surface Wind in a Bay and Application for Ship Navigation

    S. Shiotani1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.7, No.4, pp. 159-166, 2008, DOI:10.3970/icces.2008.007.159

    Abstract This paper deals with the numerical estimation of the ocean surface wind in a bay. Such estimates are very important because the wind reacts to environmental problem, such as the effects of a marine structure or a sailing ship. The estimation of the ocean surface wind was carried out in Osaka Bay in Japan using the mesoscale meteorological model MM5. The calculated numerical results were compared with the observed ones. It was confirmed that the ocean surface wind in Osaka Bay was accurately estimated. As an application of the estimation of wind in the bay, More >

  • Open Access

    ABSTRACT

    Aeroelasticity analysis of wind turbine blades based on CFD-CSD coupling

    Wei Liu1, Yiwei Wang1, Yiran An1, Xianyue Su1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.1, pp. 27-28, 2009, DOI:10.3970/icces.2009.010.027

    Abstract Understanding the aeroelastic behavior of the blade is crucial to the design of large wind turbines, which has been attracting more and more research efforts. Essentially, the aeroelasticity problem of wind turbine blades is a fluid-solid interaction problem with obvious interface. At the present time, in the aeroelasticity analysis of wind turbine, CFD software based on the incompressible Reynolds-averaged Navier-Stokes (RANS) equations are not yet routinely used , in part because of the lack of experience with regard to the application of these software to various wind turbine rotors for a wide range of conditions… More >

Displaying 251-260 on page 26 of 287. Per Page