Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (269)
  • Open Access

    ABSTRACT

    Numerical Prediction of the Ocean Surface Wind in a Bay and Application for Ship Navigation

    S. Shiotani1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.7, No.4, pp. 159-166, 2008, DOI:10.3970/icces.2008.007.159

    Abstract This paper deals with the numerical estimation of the ocean surface wind in a bay. Such estimates are very important because the wind reacts to environmental problem, such as the effects of a marine structure or a sailing ship. The estimation of the ocean surface wind was carried out in Osaka Bay in Japan using the mesoscale meteorological model MM5. The calculated numerical results were compared with the observed ones. It was confirmed that the ocean surface wind in Osaka Bay was accurately estimated. As an application of the estimation of wind in the bay, navigational simulations of a sailing… More >

  • Open Access

    ABSTRACT

    Aeroelasticity analysis of wind turbine blades based on CFD-CSD coupling

    Wei Liu1, Yiwei Wang1, Yiran An1, Xianyue Su1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.1, pp. 27-28, 2009, DOI:10.3970/icces.2009.010.027

    Abstract Understanding the aeroelastic behavior of the blade is crucial to the design of large wind turbines, which has been attracting more and more research efforts. Essentially, the aeroelasticity problem of wind turbine blades is a fluid-solid interaction problem with obvious interface. At the present time, in the aeroelasticity analysis of wind turbine, CFD software based on the incompressible Reynolds-averaged Navier-Stokes (RANS) equations are not yet routinely used , in part because of the lack of experience with regard to the application of these software to various wind turbine rotors for a wide range of conditions and the complexity of the… More >

  • Open Access

    ABSTRACT

    Wind Pressure Loads on Low Buildings in Simple Arrangements

    Renata Gnatowska

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 40-40, 2019, DOI:10.32604/icces.2019.05110

    Abstract The wind pressure loads are affected by a wide range of features involving wind flow conditions, size and shape of the buildings and their neighborhoods. Most of the available publications present the wind load characteristics of buildings with neighbouring structures as a form of idealised urban street canyons, isolated building and much less frequently as group of buildings or part of the urban terrain. The aim of such analyses is to gain a better understanding of the physics of isolated phenomena which, under the influence of other interactions, e.g., additional buildings, strongly change. This study conducted numerical CFD calculation for… More >

  • Open Access

    ARTICLE

    Frequency Domain Filtering SAR Interferometric Phase Noise Using the Amended Matrix Pencil Model

    Y,ong Gao1, Shubi Zhang1,*, Kefei Zhang2,*, Shijin Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.2, pp. 349-363, 2019, DOI:10.32604/cmes.2019.03943

    Abstract Interferometric phase filtering is one of the key steps in interferometric synthetic aperture radar (InSAR/SAR). However, the ideal filtering results are difficult to obtain due to dense fringe and low coherence regions. Moreover, the InSAR/SAR data range is relatively large, so the efficiency of interferential phase filtering is one of the major problems. In this letter, we proposed an interferometric phase filtering method based on an amended matrix pencil and linear window mean filter. The combination of the matrix pencil and the linear mean filter are introduced to the interferometric phase filtering for the first time. First, the interferometric signal… More >

  • Open Access

    ARTICLE

    Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 181-203, 2019, DOI:10.32604/sdhm.2019.00287

    Abstract Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however, blade get damaged due to wind gusts, bad weather conditions, unpredictable aerodynamic forces, lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade. It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine. In this paper, a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades. The models are built based on… More >

  • Open Access

    ARTICLE

    A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 69-90, 2017, DOI:10.3970/sdhm.2017.012.069

    Abstract Renewable energy sources are considered much in energy fields because of the contemporary energy calamities. Among the important alternatives being considered, wind energy is a durable competitor because of its dependability due to the development of the innovations, comparative cost effectiveness and great framework. To yield wind energy more proficiently, the structure of wind turbines has turned out to be substantially bigger, creating conservation and renovation works troublesome. Due to various ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. If the failure is not diagnosed early, it will lead to catastrophic damage to the… More >

  • Open Access

    ARTICLE

    An Isogeometric Analysis Computational Platform for Material Transport Simulation in Complex Neurite Networks

    Angran Li1, Xiaoqi Chai2, Ge Yang2,3, Yongjie Jessica Zhang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 123-140, 2019, DOI:10.32604/mcb.2019.06479

    Abstract Neurons exhibit remarkably complex geometry in their neurite networks. So far, how materials are transported in the complex geometry for survival and function of neurons remains an unanswered question. Answering this question is fundamental to understanding the physiology and disease of neurons. Here, we have developed an isogeometric analysis (IGA) based platform for material transport simulation in neurite networks. We modeled the transport process by reaction-diffusion-transport equations and represented geometry of the networks using truncated hierarchical tricubic B-splines (THB-spline3D). We solved the Navier-Stokes equations to obtain the velocity field of material transport in the networks. We then solved the transport… More >

  • Open Access

    ARTICLE

    A Scalable Method of Maintaining Order Statistics for Big Data Stream

    Zhaohui Zhang*,1,2,3, Jian Chen1, Ligong Chen1, Qiuwen Liu1, Lijun Yang1, Pengwei Wang1,2,3, Yongjun Zheng4

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 117-132, 2019, DOI:10.32604/cmc.2019.05325

    Abstract Recently, there are some online quantile algorithms that work on how to analyze the order statistics about the high-volume and high-velocity data stream, but the drawback of these algorithms is not scalable because they take the GK algorithm as the subroutine, which is not known to be mergeable. Another drawback is that they can’t maintain the correctness, which means the error will increase during the process of the window sliding. In this paper, we use a novel data structure to store the sketch that maintains the order statistics over sliding windows. Therefore three algorithms have been proposed based on the… More >

  • Open Access

    ARTICLE

    Local Buckling Prediction for Large Wind Turbine Blades

    W. Liu, X. Y. Su, Y. R. An, K. F. Huang1

    CMC-Computers, Materials & Continua, Vol.25, No.2, pp. 177-194, 2011, DOI:10.3970/cmc.2011.025.177

    Abstract Local buckling is a typical failure mode of large scale composite wind turbine blades. A procedure for predicting the onset and location of local buckling of composite wind turbine blades under aerodynamic loads is proposed in this paper. This procedure is distinct from its counterparts in adopting the pressure distributions obtained from Computational Fluid Dynamics (CFD) calculations as the loads. The finite element method is employed to investigate local buckling resistance of the composite blade. To address the mismatch between the unstructured CFD grids of the blade surface and the finite shell elements used during the buckling analysis, an interpolation… More >

  • Open Access

    ARTICLE

    Permissible Wind Conditions for Optimal Dynamic Soaring with a Small Unmanned Aerial Vehicle

    Liu Duo-Neng1,2, Hou Zhong-Xi1, Guo Zheng1, Yang Xi-Xiang1, Gao Xian-Zhong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.6, pp. 531-565, 2016, DOI:10.3970/cmes.2016.111.531

    Abstract Dynamic soaring is a flight maneuver to exploit gradient wind field to extend endurance and traveling distance. Optimal trajectories for permissible wind conditions are generated for loitering dynamic soaring as well as for traveling patterns with a small unmanned aerial vehicle. The efficient direct collection approach based on the Runge-Kutta integrator is used to solve the optimization problem. The fast convergence of the optimization process leads to the potential for real-time applications. Based on the results of trajectory optimizations, the general permissible wind conditions which involve the allowable power law exponents and feasible reference wind strengths supporting dynamic soaring are… More >

Displaying 241-250 on page 25 of 269. Per Page