Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Numerical Simulation Study of Vibration Characteristics of Cantilever Traffic Signal Support Structure under Wind Environment

    Meng Zhang1, Zhichao Zhou1, Guifeng Zhao1,*, Fangfang Wang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 673-698, 2023, DOI:10.32604/cmes.2022.021463

    Abstract Computational fluid dynamics (CFD) and the finite element method (FEM) are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole. By building a finite element model with the same scale as the actual structure and performing modal analysis, a preliminary understanding of the dynamic properties of the structure is obtained. Based on the two-way fluid-structure coupling calculation method, the wind vibration response of the structure under different incoming flow conditions is calculated, and the vibration characteristics of the structure are analyzed through the displacement time course data of the structure in the cross-wind… More >

  • Open Access

    REVIEW

    Review of Research Advances in CFD Techniques for the Simulation of Urban Wind Environments

    Pengfei Ju1,2,*, Mingrui Li3,4, Jingying Wang3,4

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 449-462, 2022, DOI:10.32604/fdmp.2022.018035

    Abstract

    Computational fluid dynamics (CFD) has become the main method for the prediction of the properties of the external wind environment in cities and other urban contexts. A review is presented of the existing literature in terms of boundary conditions, building models, computational domains, computational grids, and turbulence models. Some specific issues, such as the accuracy/computational cost ratio and the exploitation of existing empirical correlations, are also examined.

    More >

Displaying 1-10 on page 1 of 2. Per Page