Shunhua Chen1,*, Shinobu Yoshimura1, Kaworu Yodo2, Naoto Mitsume1, Yasunori Yusa3, Tomonori Yamada1, Chisachi Kato4, Shori Orimo4, Yoshinobu Yamade5, Akiyoshi Iida6
The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 60-60, 2019, DOI:10.32604/icces.2019.05361
Abstract With the pressing requirement of wind energy capacity, the wind turbine blade size has been getting larger and larger in recent decades. For such a large-size blade, it is of prime importance to accurately evaluate the mechanical response under various wind loading conditions. In this work, we present a computational framework to achieve this end. Firstly, a finite element model for a 5MW blade is established according to the well-known NREL report. A composite laminated element is adopted to describe the blade structure. The effectiveness of this model is validated by means of eigenfrequency analysis.… More >