Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Study of the Flow Mechanism of Wind Turbine Blades in the Yawed Condition

    Shuang Zhao1,2,3, Xijun Li4, Jianwen Wang1,2,3,*

    Energy Engineering, Vol.119, No.4, pp. 1379-1392, 2022, DOI:10.32604/ee.2022.019776

    Abstract The computational fluid dynamics method was used to simulate the flow field around a wind turbine at the yaw angles of 0°, 15°, 30°, and 45°. The angle of attack and the relative velocity of the spanwise sections of the blade were extracted with the reference points method. By analyzing the pressure distribution and the flow characteristics of the blade surface, the flow mechanism of the blade surface in the yawed condition was discussed. The results showed that the variations of the angle of attack and the relative velocity were related to the azimuth angle and the radius in the… More >

  • Open Access

    ARTICLE

    Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge

    Jinghua Wang1, Leian Zhang1, Xuemei Huang1,*, Jinfeng Zhang2, Chengwei Yuan1

    Energy Engineering, Vol.119, No.1, pp. 407-418, 2022, DOI:10.32604/EE.2022.016439

    Abstract Transverse crack often occurs in the trailing edge region of the blade when subjected to the excessive edgewise fatigue load. In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge. The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory. The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test. Compared with the laminate, the lower fatigue… More >

  • Open Access

    ARTICLE

    Multi-Scale Superhydrophobic Anti-Icing Coating for Wind Turbine Blades

    Jiangyong Bao1, Jianjun He1,*, Biao Chen2, Kaijun Yang1, Jun Jie2, Ruifeng Wang1, Shihao Zhang2

    Energy Engineering, Vol.118, No.4, pp. 947-959, 2021, DOI:10.32604/EE.2021.014535

    Abstract As a surface functional material, super-hydrophobic coating has great application potential in wind turbine blade anti-icing, self-cleaning and drag reduction. In this study, ZnO and SiO2 multi-scale superhydrophobic coatings with mechanical flexibility were prepared by embedding modified ZnO and SiO2 nanoparticles in PDMS. The prepared coating has a higher static water contact angle (CA is 153°) and a lower rolling angle (SA is 3.3°), showing excellent super-hydrophobicity. Because of its excellent superhydrophobic ability and micro-nano structure, the coating has good anti-icing ability. Under the conditions of −10°C and 60% relative humidity, the coating can delay the freezing time by 1511S,… More >

  • Open Access

    ARTICLE

    Determination of the Circulation for a Large-Scale Wind Turbine Blade Using Computational Fluid Dynamics

    Hao Cheng, Guangsheng Du*, Meng Zhang, Kun Wang, Wenbin Bai

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 685-698, 2020, DOI:10.32604/fdmp.2020.09673

    Abstract The determination of the circulation for wind turbine blades is an important problem in engineering. In the present study, we develop a specific approach to evaluate the integral that represents mathematically the circulation. First the potentialities of the method are assessed using a two-dimensional NACA64_A17 airfoil as a testbed and evaluating the influence of different integration paths and angles of attack on the circulation value. Then the method is applied to blades with different relative heights in order to provide useful reference data to be used for the optimization and reverse design of wind turbine blades. As shown by the… More >

  • Open Access

    ARTICLE

    Evaluation of Small Wind Turbine Blades with Uni-Vinyl Foam Alignments Using Static Structural Analysis

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.4, pp. 237-248, 2020, DOI:10.32604/EE.2020.011304

    Abstract Mechanical characteristics of small wind turbine blades of National Advisory Committee for Aeronautics (NACA) 63-415 series with different Univinyl (UV) foam alignments have been evaluated experimentally using Universal Testing Machine and numerically using Finite Element Analysis (FEA) software ANSYS. The wind turbine blade models considered are selected from the NACA 63415 series to give a power output of 1 kW. The blades in this study are made like a sandwich beam structure. The outermost portion of the blade is made of glass fiber reinforced plastics with epoxy resin as composite and Uni-vinyl foam alignments are placed in the inner portion,… More >

  • Open Access

    ARTICLE

    Single Parameter Sensitivity Analysis of Ply Parameters on Structural Performance of Wind Turbine Blade

    Lanting Zhang, Laifu Guo, Qiang Rong*

    Energy Engineering, Vol.117, No.4, pp. 195-207, 2020, DOI:10.32604/EE.2020.010617

    Abstract The various ply parameters of composite wind turbine blade have crucial influence, of respectively varying degree, on the static strength and stiffness of the blade, elements closely related to its performance. In this article, the method of the single-parameter sensitivity analysis is presented. A 1.5 MW wind turbine blade is considered as the study object, where the load of the blade is calculated and the respective finite element model is established. According to engineering practice, the investigation range of ply parameters is determined, and the test design scheme of ply parameter for the blade is constructed. The Tsai-Wu failure factor… More >

  • Open Access

    ARTICLE

    Experimental Study on Modal and Harmonic Analysis of Small Wind Turbine Blades Using NACA 63-415 Aerofoil Cross-Section

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.2, pp. 49-61, 2020, DOI:10.32604/EE.2020.010666

    Abstract This work focused on modal and harmonic analysis of small wind turbine blades taken from the NACA 63415 series. The sandwich structure type composite blade is fabricated from GFRP and epoxy with Uni-vinyl hard foams of different alignments as stiffeners. In this work, the modal and harmonic analysis of different varieties of blades like solid, hallow and rectangular alignment blades is carried out by the finite element method using ANSYS 18.1 software. From Finite Element Analysis, the natural frequencies, amplitudes and mode shapes are obtained. Based on the working principle of wind turbine blades, the boundary conditions are applied. The… More >

  • Open Access

    ARTICLE

    Comparative Study on Tree Classifiers for Application to Condition Monitoring of Wind Turbine Blade through Histogram Features Using Vibration Signals: A Data-Mining Approach

    A. Joshuva1,*, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 399-416, 2019, DOI:10.32604/sdhm.2019.03014

    Abstract Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources. The wind turbine is an essential system used to change kinetic energy into electrical energy. Wind turbine blades, in particular, require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost. The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features. In this… More >

  • Open Access

    ARTICLE

    Dynamic Modeling and Analysis of Wind Turbine Blade of Piezoelectric Plate Shell

    Yinhu Qiao1,*, Chunyan Zhang1, Jiang Han2

    Sound & Vibration, Vol.53, No.1, pp. 14-24, 2019, DOI:10.32604/sv.2019.04120

    Abstract This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results… More >

  • Open Access

    ABSTRACT

    Dynamic Analysis and Aeroelastic Stability Analysis of Large Composite Wind Turbine Blades

    Wei LIU, Jiacong YIN, Pu CHEN, Xianyue SU

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.4, pp. 127-128, 2011, DOI:10.3970/icces.2011.017.127

    Abstract In this paper, parametric modeling technique is employed to fast build the three-dimensional finite element shell model of a preliminarily designed large composite wind turbine blade, which is subsequently used in the dynamic analysis and static elastic aeroelastic stability analysis of the blade. In the dynamic analysis, natural frequencies and corresponding modal shapes are obtained for the blade in the case of being still as well as being rotating with rated revolution. For the rotating blade, the stress stiffening effect and spin-softening effect due to the centrifugal forces are taken into account. The static elastic aeroelastic stability analysis, i.e. buckling… More >

Displaying 11-20 on page 2 of 26. Per Page