Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    No-Aldehydes Glucose/Sucrose-Triacetin-Diamine Wood Adhesives for Particleboard

    Xuedong Xi, Antonio Pizzi*

    Journal of Renewable Materials, Vol.8, No.7, pp. 715-725, 2020, DOI:10.32604/jrm.2020.010882

    Abstract A three reagents adhesive system for wood particleboards not containing any aldehyde was developed by the reaction of glucose or sucrose with triacetin (glycerin triacetate) and with hexamethylene diamine. The system was found to be based on the mix of three reactions, namely the reaction of (i) glucose with triacetin, (ii) of the diamine with triacetin, and (iii) of glucose with the diamine. The chemical species formed were identified by Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-ToF) mass spectrometry. Wood particleboard panels were prepared with this adhesive system and gave good internal bond (IB) strength results suitable for… More >

  • Open Access

    ARTICLE

    Hydroxymethylfurfural Hardening of Pine Tannin Wood Adhesives

    F.-J. Santiago-Medina1, A. Pizzi1,2,*, S. Abdalla2

    Journal of Renewable Materials, Vol.5, No.5, pp. 435-447, 2017, DOI:10.7569/JRM.2017.634166

    Abstract An adhesive based on the reaction of a very fast reacting procyanidin-type condensed tannin, namely purified pine bark tannin, with a biosourced nontoxic and nonvolatile aldehyde derived from the pulp and paper industry, namely hydroxymethylfurfural (HMF), was shown to almost satisfy the relevant standards for bonding wood particleboard. The conditions of pH used are determinant for the result. The oligomers obtained by the reaction and their distribution have been determined by matrix-assisted laser ionization desorption time-of-flight (MALDI-TOF) mass spectrometry. Of the two reactive groups of hydroxymethylfurfural capable of reacting, the furanic aldehyde one and the furanic hydroxymethyl alcohol group, only… More >

  • Open Access

    ARTICLE

    Natural Additive for Reducing Formaldehyde Emissions in Urea-Formaldehyde Resins

    Flávio Pereira1, João Pereira2, Nádia Paiva3, João Ferra3, Jorge Manuel Martins1,4, Fernão D. Magalhães1, and Luísa Carvalho1,4*

    Journal of Renewable Materials, Vol.4, No.1, pp. 41-46, 2016, DOI:10.7569/JRM.2015.634128

    Abstract This work studies the use of soy protein as a natural formaldehyde scavenger in wood particleboard production. The protein is incorporated in two forms: a) as a powder, during the blending process of wood particles with urea-formaldehyde binder resin, and b) as an aqueous solution, added at different times during resin synthesis. Analysis of variance (ANOVA) was used to evaluate the signifi cance level of two effects (amount of added soy and time of addition) on internal bond strength, thickness swelling, and formaldehyde content of the resulting panels. The results showed that soy protein can contribute to decrease the formaldehyde… More >

Displaying 11-20 on page 2 of 13. Per Page