Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    ARTICLE

    Day-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Market

    Yağmur Yılan, Ahad Beykent*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.068440 - 10 November 2025

    Abstract Accurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies, hedge risk and plan generation schedules. By leveraging advanced data analytics and machine learning methods, accurate and reliable price forecasts can be achieved. This study forecasts day-ahead prices in Türkiye’s electricity market using eXtreme Gradient Boosting (XGBoost). We benchmark XGBoost against four alternatives—Support Vector Machines (SVM), Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GBM)—using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul (EXIST). All models were trained on an identical chronological 80/20 train–test split, with hyperparameters More >

  • Open Access

    ARTICLE

    Comparison of Objective Forecasting Method Fit with Electrical Consumption Characteristics in Timor-Leste

    Ricardo Dominico Da Silva1,2, Jangkung Raharjo1,3,*, Sudarmono Sasmono1,3

    Energy Engineering, Vol.122, No.12, pp. 5073-5090, 2025, DOI:10.32604/ee.2025.071545 - 27 November 2025

    Abstract The rapid development of technology has led to an ever-increasing demand for electrical energy. In the context of Timor-Leste, which still relies on fossil energy sources with high operational costs and significant environmental impacts, electricity load forecasting is a strategic measure to support the energy transition towards the Net Zero Emission (NZE) target by 2050. This study aims to utilize historical electricity load data for the period 2013–2024, as well as data on external factors affecting electricity consumption, to forecast electricity load in Timor-Leste in the next 10 years (2025–2035). The forecasting results are expected… More >

  • Open Access

    ARTICLE

    An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks

    Fatma S. Alrayes1, Mohammed Zakariah2,*, Mohammed K. Alzaylaee3, Syed Umar Amin4, Zafar Iqbal Khan4

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3457-3484, 2025, DOI:10.32604/cmc.2025.068599 - 23 September 2025

    Abstract Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information. The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks. The WUSTL-EHMS 2020 dataset trains and evaluates the model, constituting an imbalanced class distribution (87.46% normal traffic and 12.53% intrusion attacks). To address this imbalance, the study balances the effect of training Bias through Stratified K-fold cross-validation (K = 5), so that… More >

  • Open Access

    ARTICLE

    Developing Hybrid XGBoost Model to Predict the Strength of Polypropylene and Straw Fibers Reinforced Cemented Paste Backfill and Interpretability Insights

    Yingui Qiu1, Enming Li1,2,*, Pablo Segarra2, Bin Xi3, Jian Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1607-1629, 2025, DOI:10.32604/cmes.2025.068211 - 31 August 2025

    Abstract With the growing demand for sustainable development in the mining industry, cemented paste backfill (CPB) materials, primarily composed of tailings, play a crucial role in mine backfilling and underground support systems. To enhance the mechanical properties of CPB materials, fiber reinforcement technology has gradually gained attention, though challenges remain in predicting its performance. This study develops a hybrid model based on the adaptive equilibrium optimizer (adap-EO)-enhanced XGBoost method for accurately predicting the uniaxial compressive strength of fiber-reinforced CPB. Through systematic comparison with various other machine learning methods, results demonstrate that the proposed hybrid model exhibits… More >

  • Open Access

    ARTICLE

    Deep Learning Network Intrusion Detection Based on MI-XGBoost Feature Selection

    Manzheng Yuan1,2, Kai Yang2,*

    Journal of Cyber Security, Vol.7, pp. 197-219, 2025, DOI:10.32604/jcs.2025.066089 - 07 July 2025

    Abstract Currently, network intrusion detection systems (NIDS) face significant challenges in feature redundancy and high computational complexity, which hinder the improvement of detection performance and significantly reduce operational efficiency. To address these issues, this paper proposes an innovative weighted feature selection method combining mutual information and Extreme Gradient Boosting (XGBoost). This method aims to leverage their strengths to identify crucial feature subsets for intrusion detection accurately. Specifically, it first calculates the mutual information scores between features and target variables to evaluate individual discriminatory capabilities of features and uses XGBoost to obtain feature importance scores reflecting their… More >

  • Open Access

    ARTICLE

    Enhancing Android Malware Detection with XGBoost and Convolutional Neural Networks

    Atif Raza Zaidi1, Tahir Abbas1,*, Ali Daud2,*, Omar Alghushairy3, Hussain Dawood4, Nadeem Sarwar5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3281-3304, 2025, DOI:10.32604/cmc.2025.063646 - 03 July 2025

    Abstract Safeguarding against malware requires precise machine-learning algorithms to classify harmful apps. The Drebin dataset of 15,036 samples and 215 features yielded significant and reliable results for two hybrid models, CNN + XGBoost and KNN + XGBoost. To address the class imbalance issue, SMOTE (Synthetic Minority Over-sampling Technique) was used to preprocess the dataset, creating synthetic samples of the minority class (malware) to balance the training set. XGBoost was then used to choose the most essential features for separating malware from benign programs. The models were trained and tested using 6-fold cross-validation, measuring accuracy, precision, recall,… More >

  • Open Access

    ARTICLE

    Application and Performance Optimization of SLHS-TCN-XGBoost Model in Power Demand Forecasting

    Tianwen Zhao1, Guoqing Chen2,3, Cong Pang4, Piyapatr Busababodhin3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2883-2917, 2025, DOI:10.32604/cmes.2025.066442 - 30 June 2025

    Abstract Existing power forecasting models struggle to simultaneously handle high-dimensional, noisy load data while capturing long-term dependencies. This critical limitation necessitates an integrated approach combining dimensionality reduction, temporal modeling, and robust prediction, especially for multi-day forecasting. A novel hybrid model, SLHS-TCN-XGBoost, is proposed for power demand forecasting, leveraging SLHS (dimensionality reduction), TCN (temporal feature learning), and XGBoost (ensemble prediction). Applied to the three-year electricity load dataset of Seoul, South Korea, the model’s MAE, RMSE, and MAPE reached 112.08, 148.39, and 2%, respectively, which are significantly reduced in MAE, RMSE, and MAPE by 87.37%, 87.35%, and 87.43%… More >

  • Open Access

    ARTICLE

    Hybrid Models of Multi-CNN Features with ACO Algorithm for MRI Analysis for Early Detection of Multiple Sclerosis

    Mohammed Alshahrani1, Mohammed Al-Jabbar1,*, Ebrahim Mohammed Senan2,3, Fatima Ali Amer jid Almahri4, Sultan Ahmed Almalki1, Eman A. Alshari3,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3639-3675, 2025, DOI:10.32604/cmes.2025.064668 - 30 June 2025

    Abstract Multiple Sclerosis (MS) poses significant health risks. Patients may face neurodegeneration, mobility issues, cognitive decline, and a reduced quality of life. Manual diagnosis by neurologists is prone to limitations, making AI-based classification crucial for early detection. Therefore, automated classification using Artificial Intelligence (AI) techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages. This study developed hybrid systems integrating XGBoost (eXtreme Gradient Boosting) with multi-CNN (Convolutional Neural Networks) features based on Ant Colony Optimization (ACO) and Maximum Entropy Score-based Selection (MESbS) algorithms for early… More >

  • Open Access

    ARTICLE

    Optimization of Machine Learning Methods for Intrusion Detection in IoT

    Alireza Bahmani*

    Journal on Internet of Things, Vol.7, pp. 1-17, 2025, DOI:10.32604/jiot.2025.060786 - 24 June 2025

    Abstract With the development of the Internet of Things (IoT) technology and its widespread integration in various aspects of life, the risks associated with cyberattacks on these systems have increased significantly. Vulnerabilities in IoT devices, stemming from insecure designs and software weaknesses, have made attacks on them more complex and dangerous compared to traditional networks. Conventional intrusion detection systems are not fully capable of identifying and managing these risks in the IoT environment, making research and evaluation of suitable intrusion detection systems for IoT crucial. In this study, deep learning, multi-layer perceptron (MLP), Random Forest (RF),… More >

  • Open Access

    ARTICLE

    Hybrid Techniques of Multi-CNN and Ensemble Learning to Analyze Handwritten Spiral and Wave Drawing for Diagnosing Parkinson’s Disease

    Mohammed Al-Jabbar1, Mohammed Alshahrani1,*, Ebrahim Mohammed Senan2,3, Ibrahim Abunadi4, Sultan Ahmed Almalki1, Eman A Alshari3,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2429-2457, 2025, DOI:10.32604/cmes.2025.063938 - 30 May 2025

    Abstract Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by tremors, rigidity, and decreased movement. PD poses risks to individuals’ lives and independence. Early detection of PD is essential because it allows timely intervention, which can slow disease progression and improve outcomes. Manual diagnosis of PD is problematic because it is difficult to capture the subtle patterns and changes that help diagnose PD. In addition, the subjectivity and lack of doctors compared to the number of patients constitute an obstacle to early diagnosis. Artificial intelligence (AI) techniques, especially deep and automated learning models, provide promising… More >

Displaying 1-10 on page 1 of 64. Per Page