Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    Improving POI Recommendation via Non-Convex Regularized Tensor Completion

    Ming Zhao*, Tao Liu

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 125-134, 2020, DOI:10.32604/jihpp.2020.010211 - 18 December 2020

    Abstract The problem of low accuracy of POI (Points of Interest) recommendation in LBSN (Location-Based Social Networks) has not been effectively solved. In this paper, a POI recommendation algorithm based on nonconvex regularized tensor completion is proposed. The fourth-order tensor is constructed by using the current location category, the next location category, time and season, the regularizer is added to the objective function of tensor completion to prevent over-fitting and reduce the error of the model. The proximal algorithm is used to solve the objective function, and the adaptive momentum is introduced to improve the efficiency More >

  • Open Access

    ARTICLE

    An Efficient Energy Routing Protocol Based on Gradient Descent Method in WSNs

    Ru Jin*, Xinlian Zhou, Yue Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 115-123, 2020, DOI:10.32604/jihpp.2020.010180 - 18 December 2020

    Abstract In a wireless sensor network [1], the operation of a node depends on the battery power it carries. Because of the environmental reasons, the node cannot replace the battery. In order to improve the life cycle of the network, energy becomes one of the key problems in the design of the wireless sensor network (WSN) routing protocol [2]. This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy. Within the communication radius of the current node, the distance between the current node and the More >

  • Open Access

    ARTICLE

    Design of a Mutual Authentication and Key Agreement Protocol for WBANs

    Xiangwei Meng, Jianbo Xu*, Xiaohe Wu, Zhechong Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 107-114, 2020, DOI:10.32604/jihpp.2020.09901 - 18 December 2020

    Abstract Please WBANs are a sensor network for detection and collection of sensitive data to the human body, which is lightweight and mobile. WBANs transmit sensitive and significant messages through the public channel, which makes it easy for an attacker to eavesdrop and modify the messages, thus posing a severe threat to the security of the messages. Therefore, it is essential to put in place authentication and key agreement between different communication nodes in WBANs. In this paper, a lightweight and secure authenticated key agreement protocol in wireless body area networks is designed. It is More >

  • Open Access

    ARTICLE

    Deep Learning for Distinguishing Computer Generated Images and Natural Images: A Survey

    Bingtao Hu*, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 95-105, 2020, DOI:10.32604/jihpp.2020.010464 - 11 November 2020

    Abstract With the development of computer graphics, realistic computer graphics (CG) have become more and more common in our field of vision. This rendered image is invisible to the naked eye. How to effectively identify CG and natural images (NI) has been become a new issue in the field of digital forensics. In recent years, a series of deep learning network frameworks have shown great advantages in the field of images, which provides a good choice for us to solve this problem. This paper aims to track the latest developments and applications of deep learning in More >

  • Open Access

    REVIEW

    A Survey of GAN-Generated Fake Faces Detection Method Based on Deep Learning

    Xin Liu*, Xiao Chen

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 87-94, 2020, DOI:10.32604/jihpp.2020.09839 - 11 November 2020

    Abstract In recent years, with the rapid growth of generative adversarial networks (GANs), a photo-realistic face can be easily generated from a random vector. Moreover, the faces generated by advanced GANs are very realistic. It is reasonable to acknowledge that even a well-trained viewer has difficulties to distinguish artificial from real faces. Therefore, detecting the face generated by GANs is a necessary work. This paper mainly introduces some methods to detect GAN-generated fake faces, and analyzes the advantages and disadvantages of these models based on the network structure and evaluation indexes, and the results obtained in More >

  • Open Access

    ARTICLE

    A Novel Image Retrieval Method with Improved DCNN and Hash

    Yan Zhou, Lili Pan*, Rongyu Chen, Weizhi Shao

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 77-86, 2020, DOI:10.32604/jihpp.2020.010486 - 11 November 2020

    Abstract In large-scale image retrieval, deep features extracted by Convolutional Neural Network (CNN) can effectively express more image information than those extracted by traditional manual methods. However, the deep feature dimensions obtained by Deep Convolutional Neural Network (DCNN) are too high and redundant, which leads to low retrieval efficiency. We propose a novel image retrieval method, which combines deep features selection with improved DCNN and hash transform based on high-dimension features reduction to gain lowdimension deep features and realizes efficient image retrieval. Firstly, the improved network is based on the existing deep model to build a… More >

  • Open Access

    ARTICLE

    Image Retrieval Based on Deep Feature Extraction and Reduction with Improved CNN and PCA

    Rongyu Chen, Lili Pan*, Yan Zhou, Qianhui Lei

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 67-76, 2020, DOI:10.32604/jihpp.2020.010472 - 11 November 2020

    Abstract With the rapid development of information technology, the speed and efficiency of image retrieval are increasingly required in many fields, and a compelling image retrieval method is critical for the development of information. Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete, information more complementary and higher precision. However, the high-dimension deep features extracted by CNNs (convolutional neural networks) limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval. To solving this problem, the high-dimension feature reduction technology is… More >

  • Open Access

    ARTICLE

    Design and Implementation of Log Data Analysis Management System Based on Hadoop

    Dunhong Yao1,2,3,*, Yu Chen4

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 59-65, 2020, DOI:10.32604/jihpp.2020.010223 - 11 November 2020

    Abstract With the rapid development of the Internet, many enterprises have launched their network platforms. When users browse, search, and click the products of these platforms, most platforms will keep records of these network behaviors, these records are often heterogeneous, and it is called log data. To effectively to analyze and manage these heterogeneous log data, so that enterprises can grasp the behavior characteristics of their platform users in time, to realize targeted recommendation of users, increase the sales volume of enterprises’ products, and accelerate the development of enterprises. Firstly, we follow the process of big… More >

  • Open Access

    REVIEW

    A Survey on Adversarial Example

    Jiawei Zhang*, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.1, pp. 47-57, 2020, DOI:10.32604/jihpp.2020.010462 - 15 October 2020

    Abstract In recent years, deep learning has become a hotspot and core method in the field of machine learning. In the field of machine vision, deep learning has excellent performance in feature extraction and feature representation, making it widely used in directions such as self-driving cars and face recognition. Although deep learning can solve large-scale complex problems very well, the latest research shows that the deep learning network model is very vulnerable to the adversarial attack. Add a weak perturbation to the original input will lead to the wrong output of the neural network, but for More >

  • Open Access

    ARTICLE

    Smart Contract Fuzzing Based on Taint Analysis and Genetic Algorithms

    Zaoyu Wei1,*, Jiaqi Wang2, Xueqi Shen1, Qun Luo1

    Journal of Information Hiding and Privacy Protection, Vol.2, No.1, pp. 35-45, 2020, DOI:10.32604/jihpp.2020.010331 - 15 October 2020

    Abstract Smart contract has greatly improved the services and capabilities of blockchain, but it has become the weakest link of blockchain security because of its code nature. Therefore, efficient vulnerability detection of smart contract is the key to ensure the security of blockchain system. Oriented to Ethereum smart contract, the study solves the problems of redundant input and low coverage in the smart contract fuzz. In this paper, a taint analysis method based on EVM is proposed to reduce the invalid input, a dangerous operation database is designed to identify the dangerous input, and genetic algorithm More >

Displaying 41-50 on page 5 of 68. Per Page