Advanced Search
Displaying 1-10 on page 1 of 1238. Per Page  

Articles / Online

  • Investigation of Android Malware Using Deep Learning Approach
  • Abstract In recent days the usage of android smartphones has increased extensively by end-users. There are several applications in different categories banking/finance, social engineering, education, sports and fitness, and many more applications. The android stack is more vulnerable compared to other mobile platforms like IOS, Windows, or Blackberry because of the open-source platform. In the Existing system, malware is written using vulnerable system calls to bypass signature detection important drawback is might not work with zero-day exploits and stealth malware. The attackers target the victim with various attacks like adware, backdoor, spyware, ransomware, and zero-day exploits and create threat hunts on…
  • More
  •   Views:179       Downloads:95        Download PDF
  • Deep Fake Detection Using Computer Vision-Based Deep Neural Network with Pairwise Learning
  • Abstract Deep learning-based approaches are applied successfully in many fields such as deepFake identification, big data analysis, voice recognition, and image recognition. Deepfake is the combination of deep learning in fake creation, which states creating a fake image or video with the help of artificial intelligence for political abuse, spreading false information, and pornography. The artificial intelligence technique has a wide demand, increasing the problems related to privacy, security, and ethics. This paper has analyzed the features related to the computer vision of digital content to determine its integrity. This method has checked the computer vision features of the image frames…
  • More
  •   Views:166       Downloads:116        Download PDF
  • An Enhanced Trust-Based Secure Route Protocol for Malicious Node Detection
  • Abstract The protection of ad-hoc networks is becoming a severe concern because of the absence of a central authority. The intensity of the harm largely depends on the attacker’s intentions during hostile assaults. As a result, the loss of Information, power, or capacity may occur. The authors propose an Enhanced Trust-Based Secure Route Protocol (ETBSRP) using features extraction. First, the primary and secondary trust characteristics are retrieved and achieved routing using a calculation. The complete trust characteristic obtains by integrating all logical and physical trust from every node. To assure intermediate node trustworthiness, we designed an ETBSRP, and it calculates and…
  • More
  •   Views:229       Downloads:113        Download PDF
  • Secure and Energy Concise Route Revamp Technique in Wireless Sensor Networks
  • Abstract Energy conservation has become a significant consideration in wireless sensor networks (WSN). In the sensor network, the sensor nodes have internal batteries, and as a result, they expire after a certain period. As a result, expanding the life duration of sensing devices by improving data depletion in an effective and sustainable energy-efficient way remains a challenge. Also, the clustering strategy employs to enhance or extend the life cycle of WSNs. We identify the supervisory head node (SH) or cluster head (CH) in every grouping considered the feasible strategy for power-saving route discovery in the clustering model, which diminishes the communication…
  • More
  •   Views:150       Downloads:88        Download PDF
  • Deep Learning Prediction Model for Heart Disease for Elderly Patients
  • Abstract The detection of heart disease is a problematic task in medical research. This diagnosis utilizes a thorough analysis of the clinical tests from the patient’s medical history. The massive advances in deep learning models pursue the development of intelligent computerized systems that aid medical professionals to detect the disease type with the internet of things support. Therefore, in this paper, we propose a deep learning model for elderly patients to aid and enhance the diagnosis of heart disease. The proposed model utilizes a deeper neural architecture with multiple perceptron layers with regularization learning techniques. The model performance is verified with…
  • More
  •   Views:156       Downloads:89        Download PDF
  • An Efficient Allocation for Lung Transplantation Using Ant Colony Optimization
  • Abstract A relationship between lung transplant success and many features of recipients’/donors has long been studied. However, modeling a robust model of a potential impact on organ transplant success has proved challenging. In this study, a hybrid feature selection model was developed based on ant colony optimization (ACO) and k-nearest neighbor (kNN) classifier to investigate the relationship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing (UNOS). The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’ functional status (i.e., quality of life) after…
  • More
  •   Views:128       Downloads:95        Download PDF
  • Opportunistic Routing with Multi-Channel Cooperative Neighbour Discovery
  • Abstract Due to the scattered nature of the network, data transmission in a distributed Mobile Ad-hoc Network (MANET) consumes more energy resources (ER) than in a centralized network, resulting in a shorter network lifespan (NL). As a result, we build an Enhanced Opportunistic Routing (EORP) protocol architecture in order to address the issues raised before. This proposed routing protocol goal is to manage the routing cost by employing power, load, and delay to manage the routing energy consumption based on the flooding of control packets from the target node. According to the goal of the proposed protocol technique, it is possible…
  • More
  •   Views:108       Downloads:44        Download PDF
  • Automated Red Deer Algorithm with Deep Learning Enabled Hyperspectral Image Classification
  • Abstract Hyperspectral (HS) image classification is a hot research area due to challenging issues such as existence of high dimensionality, restricted training data, etc. Precise recognition of features from the HS images is important for effective classification outcomes. Additionally, the recent advancements of deep learning (DL) models make it possible in several application areas. In addition, the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics. In this view, this article develops an automated red deer algorithm with deep learning enabled hyperspectral image (HSI) classification (RDADL-HIC) technique. The proposed…
  • More
  •   Views:98       Downloads:46        Download PDF
  • Realtime Object Detection Through M-ResNet in Video Surveillance System
  • Abstract Object detection plays a vital role in the video surveillance systems. To enhance security, surveillance cameras are now installed in public areas such as traffic signals, roadways, retail malls, train stations, and banks. However, monitoring the video continually at a quicker pace is a challenging job. As a consequence, security cameras are useless and need human monitoring. The primary difficulty with video surveillance is identifying abnormalities such as thefts, accidents, crimes, or other unlawful actions. The anomalous action does not occur at a higher rate than usual occurrences. To detect the object in a video, first we analyze the images…
  • More
  •   Views:92       Downloads:45        Download PDF
  • Detecting Deepfake Images Using Deep Learning Techniques and Explainable AI Methods
  • Abstract Nowadays, deepfake is wreaking havoc on society. Deepfake content is created with the help of artificial intelligence and machine learning to replace one person’s likeness with another person in pictures or recorded videos. Although visual media manipulations are not new, the introduction of deepfakes has marked a breakthrough in creating fake media and information. These manipulated pictures and videos will undoubtedly have an enormous societal impact. Deepfake uses the latest technology like Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) to construct automated methods for creating fake content that is becoming increasingly difficult to detect with the human…
  • More
  •   Views:280       Downloads:70        Download PDF
Displaying 1-10 on page 1 of 1238. Per Page