Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,799)
  • Open Access

    ARTICLE

    Dynamic Hypergraph Modeling and Robustness Analysis for SIoT

    Yue Wan, Nan Jiang*, Ziyu Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3017-3034, 2024, DOI:10.32604/cmes.2024.051101

    Abstract The Social Internet of Things (SIoT) integrates the Internet of Things (IoT) and social networks, taking into account the social attributes of objects and diversifying the relationship between humans and objects, which overcomes the limitations of the IoT’s focus on associations between objects. Artificial Intelligence (AI) technology is rapidly evolving. It is critical to build trustworthy and transparent systems, especially with system security issues coming to the surface. This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT, aiming to build an SIoT hypergraph generation… More >

  • Open Access

    ARTICLE

    CoopAI-Route: DRL Empowered Multi-Agent Cooperative System for Efficient QoS-Aware Routing for Network Slicing in Multi-Domain SDN

    Meignanamoorthi Dhandapani*, V. Vetriselvi, R. Aishwarya

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2449-2486, 2024, DOI:10.32604/cmes.2024.050986

    Abstract The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale. Network slicing is crucial in delivering services for different, demanding vertical applications in this context. Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations. However, the existing IP (Internet Protocol) over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators. Conventional inter-domain routing methods, like Border Gateway Protocol (BGP), cannot make routing decisions based on performance,… More >

  • Open Access

    ARTICLE

    An Integrated Bipolar Picture Fuzzy Decision Driven System to Scrutinize Food Waste Treatment Technology through Assorted Factor Analysis

    Navaneethakrishnan Suganthi Keerthana Devi1, Samayan Narayanamoorthy1, Thirumalai Nallasivan Parthasarathy1, Chakkarapani Sumathi Thilagasree2, Dragan Pamucar3,4,*, Vladimir Simic5,6, Hasan Dinçer7,8, Serhat Yüksel7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2665-2687, 2024, DOI:10.32604/cmes.2024.050954

    Abstract Food Waste (FW) is a pressing environmental concern that affects every country globally. About one-third of the food that is produced ends up as waste, contributing to the carbon footprint. Hence, the FW must be properly treated to reduce environmental pollution. This study evaluates a few available Food Waste Treatment (FWT) technologies, such as anaerobic digestion, composting, landfill, and incineration, which are widely used. A Bipolar Picture Fuzzy Set (BPFS) is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model. A novel Criteria Importance Through… More >

  • Open Access

    ARTICLE

    Rock Mass Quality Rating Based on the Multi-Criteria Grey Metric Space

    Miloš Gligorić1,*, Zoran Gligorić1, Saša Jovanović2, Suzana Lutovac1, Dragan Pamučar3,4, Ivan Janković1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2635-2664, 2024, DOI:10.32604/cmes.2024.050898

    Abstract Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy. This study develops the novel Gromov-Hausdorff distance for rock quality (GHDQR) methodology for rock mass quality rating based on multi-criteria grey metric space. It usually presents the quality of surrounding rock by classes (metric spaces) with specified properties and adequate interval-grey numbers. Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study. The Gromov-Hausdorff distance is an especially useful discriminant function, i.e., a classifier to… More >

  • Open Access

    ARTICLE

    AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms

    Lirong Yin1, Lei Wang1, Siyu Lu2,*, Ruiyang Wang2, Haitao Ren2, Ahmed AlSanad3, Salman A. AlQahtani3, Zhengtong Yin4, Xiaolu Li5, Wenfeng Zheng3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2315-2347, 2024, DOI:10.32604/cmes.2024.050853

    Abstract At present, super-resolution algorithms are employed to tackle the challenge of low image resolution, but it is difficult to extract differentiated feature details based on various inputs, resulting in poor generalization ability. Given this situation, this study first analyzes the features of some feature extraction modules of the current super-resolution algorithm and then proposes an adaptive feature fusion block (AFB) for feature extraction. This module mainly comprises dynamic convolution, attention mechanism, and pixel-based gating mechanism. Combined with dynamic convolution with scale information, the network can extract more differentiated feature information. The introduction of a channel More >

  • Open Access

    ARTICLE

    LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes

    Brij B. Gupta1,2,3,*, Akshat Gaurav4, Razaz Waheeb Attar5, Varsha Arya6,7, Ahmed Alhomoud8, Kwok Tai Chui9

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2689-2706, 2024, DOI:10.32604/cmes.2024.050825

    Abstract This study introduces a long-short-term memory (LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes, focusing on the critical application of elderly fall detection. It balances the dataset using the Synthetic Minority Over-sampling Technique (SMOTE), effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks. The proposed LSTM model is trained on the enriched dataset, capturing the temporal dependencies essential for anomaly recognition. The model demonstrated a significant improvement in anomaly detection, with an accuracy of 84%. The results, detailed in the comprehensive classification and confusion More >

  • Open Access

    ARTICLE

    FDSC-YOLOv8: Advancements in Automated Crack Identification for Enhanced Safety in Underground Engineering

    Rui Wang1, Zhihui Liu2,*, Hongdi Liu3, Baozhong Su4, Chuanyi Ma5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3035-3049, 2024, DOI:10.32604/cmes.2024.050806

    Abstract In underground engineering, the detection of structural cracks on tunnel surfaces stands as a pivotal task in ensuring the health and reliability of tunnel structures. However, the dim and dusty environment inherent to underground engineering poses considerable challenges to crack segmentation. This paper proposes a crack segmentation algorithm termed as Focused Detection for Subsurface Cracks YOLOv8 (FDSC-YOLOv8) specifically designed for underground engineering structural surfaces. Firstly, to improve the extraction of multi-layer convolutional features, the fixed convolutional module is replaced with a deformable convolutional module. Secondly, the model’s receptive field is enhanced by introducing a multi-branch More >

  • Open Access

    ARTICLE

    Instance Segmentation of Characters Recognized in Palmyrene Aramaic Inscriptions

    Adéla Hamplová1,*, Alexey Lyavdansky2,*, Tomáš Novák1, Ondřej Svojše1, David Franc1, Arnošt Veselý1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2869-2889, 2024, DOI:10.32604/cmes.2024.050791

    Abstract This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern deep learning methods in archaeological research. Our research culminates in several key findings and scientific contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context. We also created… More >

  • Open Access

    ARTICLE

    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access

    ARTICLE

    Evaluations of Chris-Jerry Data Using Generalized Progressive Hybrid Strategy and Its Engineering Applications

    Refah Alotaibi1, Hoda Rezk2, Ahmed Elshahhat3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3073-3103, 2024, DOI:10.32604/cmes.2024.050606

    Abstract A new one-parameter Chris-Jerry distribution, created by mixing exponential and gamma distributions, is discussed in this article in the presence of incomplete lifetime data. We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry (CJ) distribution. When the indicated censored data is present, Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices, including the hazard rate and reliability functions. We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity. More >

Displaying 11-20 on page 2 of 3799. Per Page