Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,968)
  • Open Access

    ARTICLE

    Hybrid DF and SIR Forwarding Strategy in Conventional and Distributed Alamouti Space-Time Coded Cooperative Networks

    Slim Chaoui1,*, Omar Alruwaili1, Faeiz Alserhani1, Haifa Harrouch2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1933-1954, 2025, DOI:10.32604/cmes.2025.059346 - 27 January 2025

    Abstract In this paper, we propose a hybrid decode-and-forward and soft information relaying (HDFSIR) strategy to mitigate error propagation in coded cooperative communications. In the HDFSIR approach, the relay operates in decode-and-forward (DF) mode when it successfully decodes the received message; otherwise, it switches to soft information relaying (SIR) mode. The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone. Closed-form expressions for the outage probability and symbol error rate (SER) are derived for coded cooperative communication with HDFSIR and energy-harvesting relays. Additionally,… More >

  • Open Access

    ARTICLE

    Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems

    Miloš Sedak*, Maja Rosić, Božidar Rosić

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2111-2145, 2025, DOI:10.32604/cmes.2025.059319 - 27 January 2025

    Abstract This paper introduces a hybrid multi-objective optimization algorithm, designated HMODESFO, which amalgamates the exploratory prowess of Differential Evolution (DE) with the rapid convergence attributes of the Sailfish Optimization (SFO) algorithm. The primary objective is to address multi-objective optimization challenges within mechanical engineering, with a specific emphasis on planetary gearbox optimization. The algorithm is equipped with the ability to dynamically select the optimal mutation operator, contingent upon an adaptive normalized population spacing parameter. The efficacy of HMODESFO has been substantiated through rigorous validation against established industry benchmarks, including a suite of Zitzler-Deb-Thiele (ZDT) and Zeb-Thiele-Laumanns-Zitzler (DTLZ) More >

  • Open Access

    REVIEW

    Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review

    Ahmed Manguri1,2,3,*, Hogr Hassan3, Najmadeen Saeed3,4, Robert Jankowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 933-971, 2025, DOI:10.32604/cmes.2025.059249 - 27 January 2025

    Abstract The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications. Structural optimization approaches seek to determine the optimal design, by considering material performance, cost, and structural safety. The design approaches aim to reduce the built environment’s energy use and carbon emissions. This comprehensive review examines optimization techniques, including size, shape, topology, and multi-objective approaches, by integrating these methodologies. The trends and advancements that contribute to developing more efficient, cost-effective, and reliable structural designs were identified. The review also discusses emerging technologies, such as machine learning applications with More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method

    Wenpeng Li1, Zhenghe Liu1, Yujing Ma1, Zhuxuan Meng2,*, Ji Ma3, Weisong Liu2, Vinh Phu Nguyen4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1515-1543, 2025, DOI:10.32604/cmes.2025.059235 - 27 January 2025

    Abstract This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior. Physical models involving deformation, such as collisions, vibrations, and penetration, are developed using the material point method. To reduce the computational cost of Monte Carlo simulations, response surface models are created as surrogate models for the material point system to approximate its dynamic behavior. An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order, effectively balancing the accuracy and computational efficiency of the surrogate model. Based on the sparse polynomial More >

  • Open Access

    ARTICLE

    A Dynamic Prediction Approach for Wire Icing Thickness under Extreme Weather Conditions Based on WGAN-GP-RTabNet

    Mingguan Zhao1,2,*, Xinsheng Dong1,2, Yang Yang1,2, Meng Li1,2, Hongxia Wang1,2, Shuyang Ma1,2, Rui Zhu3, Xiaojing Zhu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2091-2109, 2025, DOI:10.32604/cmes.2025.059169 - 27 January 2025

    Abstract Ice cover on transmission lines is a significant issue that affects the safe operation of the power system. Accurate calculation of the thickness of wire icing can effectively prevent economic losses caused by ice disasters and reduce the impact of power outages on residents. However, under extreme weather conditions, strong instantaneous wind can cause tension sensors to fail, resulting in significant errors in the calculation of icing thickness in traditional mechanics-based models. In this paper, we propose a dynamic prediction model of wire icing thickness that can adapt to extreme weather environments. The model expands… More >

  • Open Access

    REVIEW

    Leveraging Artificial Intelligence to Achieve Sustainable Public Healthcare Services in Saudi Arabia: A Systematic Literature Review of Critical Success Factors

    Rakesh Kumar1,*, Ajay Singh2, Ahmed Subahi Ahmed Kassar3, Mohammed Ismail Humaida3, Sudhanshu Joshi4, Manu Sharma5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1289-1349, 2025, DOI:10.32604/cmes.2025.059152 - 27 January 2025

    Abstract This review aims to analyze the development and impact of Artificial Intelligence (AI) in the context of Saudi Arabia’s public healthcare system to fulfill Vision 2030 objectives. It is extensively devoted to AI technology deployment relevant to disease management, healthcare delivery, epidemiology, and policy-making. However, its AI is culturally sensitive and ethically grounded in Islam. Based on the PRISMA framework, an SLR evaluated primary academic literature, cases, and practices of Saudi Arabia’s AI implementation in the public healthcare sector. Instead, it categorizes prior research based on how AI can work, the issues it poses, and… More >

  • Open Access

    ARTICLE

    Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing

    Yuxuan Wu, Sirish Namilae*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2067-2090, 2025, DOI:10.32604/cmes.2024.059091 - 27 January 2025

    Abstract Powder bed fusion (PBF) in metallic additive manufacturing offers the ability to produce intricate geometries, high-strength components, and reliable products. However, powder processing before energy-based binding significantly impacts the final product’s integrity. Processing maps guide efficient process design to minimize defects, but creating them through experimentation alone is challenging due to the wide range of parameters, necessitating a comprehensive computational parametric analysis. In this study, we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders. Uniform lattice parameter sweeps are often used for parametric… More >

  • Open Access

    ARTICLE

    Imbibition Front and Phase Distribution in Shale Based on Lattice Boltzmann Method

    Li Lu1,2,3, Yadong Huang2,4, Kuo Liu2, Xuhui Zhang3,5, Xiaobing Lu3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2173-2190, 2025, DOI:10.32604/cmes.2025.059045 - 27 January 2025

    Abstract To study the development of imbibition such as the imbibition front and phase distribution in shale, the Lattice Boltzmann Method (LBM) is used to study the imbibition processes in the pore-throat network of shale. Through dimensional analysis, four dimensionless parameters affecting the imbibition process were determined. A color gradient model of LBM was used in computation based on a real core pore size distribution. The numerical results show that the four factors have great effects on imbibition. The impact of each factor is not monotonous. The imbibition process is the comprehensive effect of all aspects. More >

  • Open Access

    ARTICLE

    A Three-Dimensional SPH Simulation of Lander Footpad Impact on a Lunar Regolith Bed

    Wanqing Yuan1, Huiying Xie1, Can Huang2, Xiaoliang Wang1,3,*, Qingquan Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2045-2066, 2025, DOI:10.32604/cmes.2025.058977 - 27 January 2025

    Abstract Landing spacecraft experience significant impact forces during landing, resulting in large deformation and failure in the soil surface, which severely affects landing safety and stability. This paper establishes a smoothed particle hydrodynamics (SPH) model based on the theory of soil elastoplastic constitutive relations to describe the process of a lander’s footpad impacting lunar regolith vertically. The model can provide engineering indices such as impact load and penetration depth, and illustrate the large deformation and crater characteristics of the regolith. A detailed analysis of the response of the footpad and lunar regolith during landing reveals that… More > Graphic Abstract

    A Three-Dimensional SPH Simulation of Lander Footpad Impact on a Lunar Regolith Bed

  • Open Access

    ARTICLE

    Magneto-Electro-Elastic Analysis of Doubly-Curved Shells: Higher-Order Equivalent Layer-Wise Formulation

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1767-1838, 2025, DOI:10.32604/cmes.2024.058842 - 27 January 2025

    Abstract Recent engineering applications increasingly adopt smart materials, whose mechanical responses are sensitive to magnetic and electric fields. In this context, new and computationally efficient modeling strategies are essential to predict the multiphysic behavior of advanced structures accurately. Therefore, the manuscript presents a higher-order formulation for the static analysis of laminated anisotropic magneto-electro-elastic doubly-curved shell structures. The fundamental relations account for the full coupling between the electric field, magnetic field, and mechanical elasticity. The configuration variables are expanded along the thickness direction using a generalized formulation based on the Equivalent Layer-Wise approach. Higher-order polynomials are selected,… More >

Displaying 11-20 on page 2 of 3968. Per Page