Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,934)
  • Open Access

    ARTICLE

    Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique

    Quynh-Anh Thi Bui1,*, Dam Duc Nguyen1, Hiep Van Le1, Indra Prakash2, Binh Thai Pham1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 691-712, 2025, DOI:10.32604/cmes.2024.054766 - 17 December 2024

    Abstract Determination of Shear Bond strength (SBS) at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures. The study used three Machine Learning (ML) models, including K-Nearest Neighbors (KNN), Extra Trees (ET), and Light Gradient Boosting Machine (LGBM), to predict SBS based on easily determinable input parameters. Also, the Grid Search technique was employed for hyper-parameter tuning of the ML models, and cross-validation and learning curve analysis were used for training the models. The models were built on a database of 240 experimental results and three input variables: temperature, normal pressure, and tack coat… More >

  • Open Access

    ARTICLE

    LoRa Sense: Sensing and Optimization of LoRa Link Behavior Using Path-Loss Models in Open-Cast Mines

    Bhanu Pratap Reddy Bhavanam, Prashanth Ragam*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 425-466, 2025, DOI:10.32604/cmes.2024.052355 - 17 December 2024

    Abstract The Internet of Things (IoT) has orchestrated various domains in numerous applications, contributing significantly to the growth of the smart world, even in regions with low literacy rates, boosting socio-economic development. This study provides valuable insights into optimizing wireless communication, paving the way for a more connected and productive future in the mining industry. The IoT revolution is advancing across industries, but harsh geometric environments, including open-pit mines, pose unique challenges for reliable communication. The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency… More >

  • Open Access

    CORRECTION

    Correction: Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1,2, Huali Pan1,*, Jiangcheng Huang3, Bilal Ahmed4, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2625-2625, 2024, DOI:10.32604/cmes.2024.059706 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on The Bottleneck of Blockchain Techniques Scalability, Security and Privacy Protection

    Shen Su1,*, Daojing He2, Neeraj Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1933-1937, 2024, DOI:10.32604/cmes.2024.059318 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Advanced Security for Future Mobile Internet: A Key Challenge for the Digital Transformation

    Ilsun You1,*, Xiaofeng Chen2, Vishal Sharma3, Gaurav Choudhary4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 1907-1909, 2024, DOI:10.32604/cmes.2024.058939 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Densely Convolutional BU-NET Framework for Breast Multi-Organ Cancer Nuclei Segmentation through Histopathological Slides and Classification Using Optimized Features

    Amjad Rehman1, Muhammad Mujahid1, Robertas Damasevicius2,*, Faten S Alamri3, Tanzila Saba1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2375-2397, 2024, DOI:10.32604/cmes.2024.056937 - 31 October 2024

    Abstract This study aims to develop a computational pathology approach that can properly detect and distinguish histology nuclei. This is crucial for histopathological image analysis, as it involves segmenting cell nuclei. However, challenges exist, such as determining the boundary region of normal and deformed nuclei and identifying small, irregular nuclei structures. Deep learning approaches are currently dominant in digital pathology for nucleus recognition and classification, but their complex features limit their practical use in clinical settings. The existing studies have limited accuracy, significant processing costs, and a lack of resilience and generalizability across diverse datasets. We… More >

  • Open Access

    ARTICLE

    Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search

    Yaren Aydın1, Gebrail Bekdaş1,*, Sinan Melih Nigdeli1, Zong Woo Geem2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2471-2499, 2024, DOI:10.32604/cmes.2024.056693 - 31 October 2024

    Abstract Dynamic impacts such as wind and earthquakes cause loss of life and economic damage. To ensure safety against these effects, various measures have been taken from past to present and solutions have been developed using different technologies. Tall buildings are more susceptible to vibrations such as wind and earthquakes. Therefore, vibration control has become an important issue in civil engineering. This study optimizes tuned mass damper inerter (TMDI) using far-fault ground motion records. This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm. Structure displacement and total acceleration against earthquake load More >

  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics-Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Advanced BERT and CNN-Based Computational Model for Phishing Detection in Enterprise Systems

    Brij B. Gupta1,2,3,4,*, Akshat Gaurav5, Varsha Arya6,7, Razaz Waheeb Attar8, Shavi Bansal9, Ahmed Alhomoud10, Kwok Tai Chui11

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2165-2183, 2024, DOI:10.32604/cmes.2024.056473 - 31 October 2024

    Abstract Phishing attacks present a serious threat to enterprise systems, requiring advanced detection techniques to protect sensitive data. This study introduces a phishing email detection framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN for classification, specifically designed for enterprise information systems. BERT’s linguistic capabilities are used to extract key features from email content, which are then processed by a convolutional neural network (CNN) model optimized for phishing detection. Achieving an accuracy of 97.5%, our proposed model demonstrates strong proficiency in identifying phishing emails. This approach represents a significant advancement in More >

  • Open Access

    ARTICLE

    Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion

    Hamad Naeem1, Amjad Alsirhani2,*, Faeiz M. Alserhani3, Farhan Ullah4, Ondrej Krejcar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2185-2223, 2024, DOI:10.32604/cmes.2024.056308 - 31 October 2024

    Abstract When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments, integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity. Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimination (RFE), selected features are standardized… More >

Displaying 31-40 on page 4 of 3934. Per Page