Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,902)
  • Open Access

    ARTICLE

    Three-Dimensional Multiferroic Structures under Time-Harmonic Loading

    Sonal Nirwal1,3,*, Ernian Pan1,2,*, Chih-Ping Lin1,2, Quoc Kinh Tran1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1165-1191, 2024, DOI:10.32604/cmes.2024.054255 - 27 September 2024

    Abstract Magneto-electro-elastic (MEE) materials are a specific class of advanced smart materials that simultaneously manifest the coupling behavior under electric, magnetic, and mechanical loads. This unique combination of properties allows MEE materials to respond to mechanical, electric, and magnetic stimuli, making them versatile for various applications. This paper investigates the static and time-harmonic field solutions induced by the surface load in a three-dimensional (3D) multilayered transversally isotropic (TI) linear MEE layered solid. Green’s functions corresponding to the applied uniform load (in both horizontal and vertical directions) are derived using the Fourier-Bessel series (FBS) system of vector… More >

  • Open Access

    ARTICLE

    A Fast and Memory-Efficient Direct Rendering Method for Polynomial-Based Implicit Surfaces

    Jiayu Ren1,*, Susumu Nakata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1033-1046, 2024, DOI:10.32604/cmes.2024.054238 - 27 September 2024

    Abstract Three-dimensional surfaces are typically modeled as implicit surfaces. However, direct rendering of implicit surfaces is not simple, especially when such surfaces contain finely detailed shapes. One approach is ray-casting, where the field of the implicit surface is assumed to be piecewise polynomials defined on the grid of a rectangular domain. A critical issue for direct rendering based on ray-casting is the computational cost of finding intersections between surfaces and rays. In particular, ray-casting requires many function evaluations along each ray, severely slowing the rendering speed. In this paper, a method is proposed to achieve direct More >

  • Open Access

    ARTICLE

    Concurrent Two–Scale Topology Optimization of Thermoelastic Structures Using a M–VCUT Level Set Based Model of Microstructures

    Jin Zhou, Minjie Shao*, Ye Tian, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1327-1345, 2024, DOI:10.32604/cmes.2024.054059 - 27 September 2024

    Abstract By analyzing the results of compliance minimization of thermoelastic structures, we observed that microstructures play an important role in this optimization problem. Then, we propose to use a multiple variable cutting (M–VCUT) level set-based model of microstructures to solve the concurrent two–scale topology optimization of thermoelastic structures. A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes, thus giving more diversity of microstructure and more flexibility in design optimization. The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method, and then More >

  • Open Access

    ARTICLE

    Task Offloading and Trajectory Optimization in UAV Networks: A Deep Reinforcement Learning Method Based on SAC and A-Star

    Jianhua Liu*, Peng Xie, Jiajia Liu, Xiaoguang Tu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1243-1273, 2024, DOI:10.32604/cmes.2024.054002 - 27 September 2024

    Abstract In mobile edge computing, unmanned aerial vehicles (UAVs) equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility, flexibility, rapid deployment, and terrain agnosticism. These attributes enable UAVs to reach designated areas, thereby addressing temporary computing swiftly in scenarios where ground-based servers are overloaded or unavailable. However, the inherent broadcast nature of line-of-sight transmission methods employed by UAVs renders them vulnerable to eavesdropping attacks. Meanwhile, there are often obstacles that affect flight safety in real UAV operation areas, and collisions between UAVs may also occur. To solve… More >

  • Open Access

    ARTICLE

    An Efficient Technique for One-Dimensional Fractional Diffusion Equation Model for Cancer Tumor

    Daasara Keshavamurthy Archana1, Doddabhadrappla Gowda Prakasha1, Pundikala Veeresha2, Kottakkaran Sooppy Nisar3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1347-1363, 2024, DOI:10.32604/cmes.2024.053916 - 27 September 2024

    Abstract This study intends to examine the analytical solutions to the resulting one-dimensional differential equation of a cancer tumor model in the frame of time-fractional order with the Caputo-fractional operator employing a highly efficient methodology called the -homotopy analysis transform method. So, the preferred approach effectively found the analytic series solution of the proposed model. The procured outcomes of the present framework demonstrated that this method is authentic for obtaining solutions to a time-fractional-order cancer model. The results achieved graphically specify that the concerned paradigm is dependent on arbitrary order and parameters and also disclose the More >

  • Open Access

    ARTICLE

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

    Khawaja Tahir Mehmood1,2,*, Shahid Atiq1, Intisar Ali Sajjad3, Muhammad Majid Hussain4, Malik M. Abdul Basit2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1673-1708, 2024, DOI:10.32604/cmes.2024.053903 - 27 September 2024

    Abstract Software-Defined Networking (SDN), with segregated data and control planes, provides faster data routing, stability, and enhanced quality metrics, such as throughput (Th), maximum available bandwidth (Bd(max)), data transfer (DTransfer), and reduction in end-to-end delay (D(E-E)). This paper explores the critical work of deploying SDN in large­scale Data Center Networks (DCNs) to enhance its Quality of Service (QoS) parameters, using logically distributed control configurations. There is a noticeable increase in Delay(E-E) when adopting SDN with a unified (single) control structure in big DCNs to handle Hypertext Transfer Protocol (HTTP) requests causing a reduction in network quality parameters (Bd(max), Th, DTransfer, D(E-E),… More > Graphic Abstract

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

  • Open Access

    ARTICLE

    Precision Motion Control of Hydraulic Actuator Using Adaptive Back-Stepping Sliding Mode Controller

    Zhenshuai Wan1,2,*, Longwang Yue2, Yanfeng Wang2, Pu Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1047-1065, 2024, DOI:10.32604/cmes.2024.053773 - 27 September 2024

    Abstract Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances. These unfavorable factors adversely affect the control performance of the hydraulic actuator. Although various control methods have been employed to improve the tracking precision of the dynamic system, optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive. This study presents an adaptive back-stepping sliding mode controller (ABSMC) to enhance the trajectory tracking precision, where the virtual control law is constructed to replace the position error. The adaptive control theory is introduced in More >

  • Open Access

    ARTICLE

    Modeling the Dynamics of Tuberculosis with Vaccination, Treatment, and Environmental Impact: Fractional Order Modeling

    Muhammad Altaf Khan1,*, Mahmoud H. DarAssi2, Irfan Ahmad3, Noha Mohammad Seyam4, Ebraheem Alzahrani5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1365-1394, 2024, DOI:10.32604/cmes.2024.053681 - 27 September 2024

    Abstract A mathematical model is designed to investigate Tuberculosis (TB) disease under the vaccination, treatment, and environmental impact with real cases. First, we introduce the model formulation in non-integer order derivative and then, extend the model into fractional order derivative. The fractional system’s existence, uniqueness, and other relevant properties are shown. Then, we study the stability analysis of the equilibrium points. The disease-free equilibrium (DFE) is locally asymptotically stable (LAS) when . Further, we show the global asymptotical stability (GAS) of the endemic equilibrium (EE) for and for . The existence of bifurcation analysis in the More >

  • Open Access

    ARTICLE

    Robust Particle Swarm Optimization Algorithm for Modeling the Effect of Oxides Thermal Properties on AMIG 304L Stainless Steel Welds

    Rachid Djoudjou1,*, Abdeljlil Chihaoui Hedhibi3, Kamel Touileb1, Abousoufiane Ouis1, Sahbi Boubaker2, Hani Said Abdo4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1809-1825, 2024, DOI:10.32604/cmes.2024.053621 - 27 September 2024

    Abstract There are several advantages to the MIG (Metal Inert Gas) process, which explains its increased use in various welding sectors, such as automotive, marine, and construction. A variant of the MIG process, where the same equipment is employed except for the deposition of a thin layer of flux before the welding operation, is the AMIG (Activated Metal Inert Gas) technique. This study focuses on investigating the impact of physical properties of individual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can help determine a relationship among weld depth… More >

  • Open Access

    ARTICLE

    IWTW: A Framework for IoWT Cyber Threat Analysis

    GyuHyun Jeon1, Hojun Jin1, Ju Hyeon Lee1, Seungho Jeon2, Jung Taek Seo2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1575-1622, 2024, DOI:10.32604/cmes.2024.053465 - 27 September 2024

    Abstract The Internet of Wearable Things (IoWT) or Wearable Internet of Things (WIoT) is a new paradigm that combines IoT and wearable technology. Advances in IoT technology have enabled the miniaturization of sensors embedded in wearable devices and the ability to communicate data and access real-time information over low-power mobile networks. IoWT devices are highly interdependent with mobile devices. However, due to their limited processing power and bandwidth, IoWT devices are vulnerable to cyberattacks due to their low level of security. Threat modeling and frameworks for analyzing cyber threats against existing IoT or low-power protocols have… More >

Displaying 41-50 on page 5 of 3902. Per Page