Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,045)
  • Open Access

    ARTICLE

    Heat Transfer Area Optimization for Heat Exchanger System

    Yu-Cheng Liao1, Fu-I Chou1,*, Po-Yuan Yang2, Jyh-Horng Chou3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 335-349, 2025, DOI:10.32604/cmes.2025.062228 - 11 April 2025

    Abstract This paper presents an allowable-tolerance-based group search optimization (AT-GSO), which combines the robust GSO (R-GSO) and the external quality design planning of the Taguchi method. AT-GSO algorithm is used to optimize the heat transfer area of the heat exchanger system. The R-GSO algorithm integrates the GSO algorithm with the Taguchi method, utilizing the Taguchi method to determine the optimal producer in each iteration of the GSO algorithm to strengthen the robustness of the search process and the ability to find the global optima. In conventional parameter design optimization, it is typically assumed that the designed… More >

  • Open Access

    REVIEW

    Gait Planning, and Motion Control Methods for Quadruped Robots: Achieving High Environmental Adaptability: A Review

    Sheng Dong*, Feihu Fan, Yinuo Chen, Shangpeng Guo, Jiayu Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1-50, 2025, DOI:10.32604/cmes.2025.062113 - 11 April 2025

    Abstract Legged robots have always been a focal point of research for scholars domestically and internationally. Compared to other types of robots, quadruped robots exhibit superior balance and stability, enabling them to adapt effectively to diverse environments and traverse rugged terrains. This makes them well-suited for applications such as search and rescue, exploration, and transportation, with strong environmental adaptability, high flexibility, and broad application prospects. This paper discusses the current state of research on quadruped robots in terms of development status, gait trajectory planning methods, motion control strategies, reinforcement learning applications, and control algorithm integration. It More >

  • Open Access

    ARTICLE

    Nonlinear Post-Buckling Stability of Graphene Origami-Enabled Auxetic Metamaterials Plates

    Salwa A. Mohamed1, Mohamed A. Eltaher2,3,*, Nazira Mohamed1, Rasha Abo-bakr4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 515-538, 2025, DOI:10.32604/cmes.2025.061897 - 11 April 2025

    Abstract The nonlinear post-buckling response of functionally graded (FG) copper matrix plates enforced by graphene origami auxetic metamaterials (GOAMs) is investigated in the current work. The auxetic material properties of the plate are controlled by graphene content and the degree of origami folding, which are graded across the thickness of the plate. The material properties of the GOAM plate are evaluated using genetic micro-mechanical models. Governing nonlinear eigenvalue problems for the post-buckling response of the GOAM composite plate are derived using the virtual work principle and a four-variable nonlinear shear deformation theory. A novel differential quadrature More >

  • Open Access

    ARTICLE

    Statistical Inference for Kumaraswamy Distribution under Generalized Progressive Hybrid Censoring Scheme with Application

    Magdy Nagy*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 185-223, 2025, DOI:10.32604/cmes.2025.061865 - 11 April 2025

    Abstract In this present work, we propose the expected Bayesian and hierarchical Bayesian approaches to estimate the shape parameter and hazard rate under a generalized progressive hybrid censoring scheme for the Kumaraswamy distribution. These estimates have been obtained using gamma priors based on various loss functions such as squared error, entropy, weighted balance, and minimum expected loss functions. An investigation is carried out using Monte Carlo simulation to evaluate the effectiveness of the suggested estimators. The simulation provides a quantitative assessment of the estimates accuracy and efficiency under various conditions by comparing them in terms of More >

  • Open Access

    ARTICLE

    Radiative Flow of Ag-Fe3O4/Water Hybrid Nanofluids Induced by a Shrinking/Stretching Disk with Influence of Velocity and Thermal Slip Conditions

    Muhammad Zubair Mustafa1, Sumera Dero1, Liaquat Ali Lund2, Mehboob Ul Hassan3, Umair Khan4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 499-513, 2025, DOI:10.32604/cmes.2025.061804 - 11 April 2025

    Abstract This paper discusses the model of the boundary layer (BL) flow and the heat transfer characteristics of hybrid nanofluid (HNF) over shrinking/stretching disks. In addition, the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined. The considered hybrid nano-fluid contains silver (Ag) and iron oxide (Fe3O4) nanoparticles dispersed in the water to prepare the Ag-Fe3O4/water-based hybrid nanofluid. The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations. For a numerical solution, the shooting method in Maple is employed. Moreover, the duality in solutions is… More > Graphic Abstract

    Radiative Flow of Ag-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub>/Water Hybrid Nanofluids Induced by a Shrinking/Stretching Disk with Influence of Velocity and Thermal Slip Conditions

  • Open Access

    ARTICLE

    IDCE: Integrated Data Compression and Encryption for Enhanced Security and Efficiency

    Muhammad Usama1, Arshad Aziz2, Suliman A. Alsuhibany3,*, Imtiaz Hassan2, Farrukh Yuldashev4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1029-1048, 2025, DOI:10.32604/cmes.2025.061787 - 11 April 2025

    Abstract Data compression plays a vital role in data management and information theory by reducing redundancy. However, it lacks built-in security features such as secret keys or password-based access control, leaving sensitive data vulnerable to unauthorized access and misuse. With the exponential growth of digital data, robust security measures are essential. Data encryption, a widely used approach, ensures data confidentiality by making it unreadable and unalterable through secret key control. Despite their individual benefits, both require significant computational resources. Additionally, performing them separately for the same data increases complexity and processing time. Recognizing the need for More >

  • Open Access

    ARTICLE

    SL-COA: Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis

    Yunhan Ling1, Huajun Peng2, Yiqing Shi1,*, Chao Xu1, Jingzhen Yan1, Jingjing Wang1, Hui Ma3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 767-808, 2025, DOI:10.32604/cmes.2025.061763 - 11 April 2025

    Abstract The traditional first-order reliability method (FORM) often encounters challenges with non-convergence of results or excessive calculation when analyzing complex engineering problems. To improve the global convergence speed of structural reliability analysis, an improved coati optimization algorithm (COA) is proposed in this paper. In this study, the social learning strategy is used to improve the coati optimization algorithm (SL-COA), which improves the convergence speed and robustness of the new heuristic optimization algorithm. Then, the SL-COA is compared with the latest heuristic optimization algorithms such as the original COA, whale optimization algorithm (WOA), and osprey optimization algorithm… More >

  • Open Access

    ARTICLE

    Multi-Objective Approaches for Optimizing 37-Bus Power Distribution Systems with Reconfiguration Technique: From Unbalance Current & Voltage Factor to Reliability Indices

    Murat Cikan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 673-721, 2025, DOI:10.32604/cmes.2025.061699 - 11 April 2025

    Abstract This study examines various issues arising in three-phase unbalanced power distribution networks (PDNs) using a comprehensive optimization approach. With the integration of renewable energy sources, increasing energy demands, and the adoption of smart grid technologies, power systems are undergoing a rapid transformation, making the need for efficient, reliable, and sustainable distribution networks increasingly critical. In this paper, the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms. Among these advanced search algorithms, the Bonobo Optimizer (BO) has demonstrated superior performance in handling the complexities of unbalanced power… More >

  • Open Access

    ARTICLE

    Advanced Computational Modeling for Brain Tumor Detection: Enhancing Segmentation Accuracy Using ICA-I and ICA-II Techniques

    Abdullah A. Asiri1, Toufique A. Soomro2,3,*, Ahmed Ali4, Faisal Bin Ubaid5, Muhammad Irfan6,*, Khlood M. Mehdar7, Magbool Alelyani8, Mohammed S. Alshuhri9, Ahmad Joman Alghamdi10, Sultan Alamri10

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 255-287, 2025, DOI:10.32604/cmes.2025.061683 - 11 April 2025

    Abstract Global mortality rates are greatly impacted by malignancies of the brain and nervous system. Although, Magnetic Resonance Imaging (MRI) plays a pivotal role in detecting brain tumors; however, manual assessment is time-consuming and susceptible to human error. To address this, we introduce ICA2-SVM, an advanced computational framework integrating Independent Component Analysis Architecture-2 (ICA2) and Support Vector Machine (SVM) for automated tumor segmentation and classification. ICA2 is utilized for image preprocessing and optimization, enhancing MRI consistency and contrast. The Fast-Marching Method (FMM) is employed to delineate tumor regions, followed by SVM for precise classification. Validation on More >

  • Open Access

    ARTICLE

    Computational Modeling of Streptococcus Suis Dynamics via Stochastic Delay Differential Equations

    Umar Shafique1, Ali Raza2,7,*, Dumitru Baleanu3, Khadija Nasir4, Muhammad Naveed5, Abu Bakar Siddique1, Emad Fadhal6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 449-476, 2025, DOI:10.32604/cmes.2025.061635 - 11 April 2025

    Abstract Streptococcus suis (S. suis) is a major disease impacting pig farming globally. It can also be transferred to humans by eating raw pork. A comprehensive study was recently carried out to determine the indices through multiple geographic regions in China. Methods: The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features, including positivity, boundedness equilibria, reproduction number, and parameter sensitivity. Stochastic Euler, Runge Kutta, and Euler Maruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population. However, the dynamic… More >

Displaying 21-30 on page 3 of 4045. Per Page