Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (552)
  • Open Access

    ARTICLE

    Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector: From Experimental to Numerical Study

    Zihan Wang1, Boshan Zhang2, Hui Wang1,*, Qing Ai1, Xingchun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048217

    Abstract The application of ultra-high performance concrete (UHPC) as a covering layer for steel bridge decks has gained widespread popularity. By employing a connection without a shear connector between the steel plate and UHPC, namely, the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface, the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated. This study develops constitutive models for these two interfaces without shear connectors, based on the interfacial pull-off and push-out tests. For validation, three-point bending tests on the steel-UHPC composite plates are conducted. The results… More >

  • Open Access

    ARTICLE

    Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling

    Daisuke Ishihara*, Syunnosuke Nozaki, Tomoya Niho, Naoto Takayama

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.049694

    Abstract The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters. Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations. Each formulation has its advantages and disadvantages, and the choice depends on the characteristics of each coupled problem. This study proposes a new option: a coupled analysis strategy that combines the best features of the existing formulations, namely, the hybrid partitioned-monolithic method. The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly… More >

  • Open Access

    ARTICLE

    Generalized nth-Order Perturbation Method Based on Loop Subdivision Surface Boundary Element Method for Three-Dimensional Broadband Structural Acoustic Uncertainty Analysis

    Ruijin Huo1,2,3, Qingxiang Pei1,2,3, Xiaohui Yuan1,*, Yanming Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.049185

    Abstract In this paper, a generalized th-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems. The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field, and the th-order discretization formulation of the boundary integral equation is derived. In addition, the computation of loop subdivision surfaces and the subdivision rules are introduced. In order to confirm the effectiveness of the algorithm, the computed results are contrasted and analyzed with the results under Monte Carlo simulations (MCs) through several… More >

  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.046473

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were used to… More >

  • Open Access

    ARTICLE

    Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method

    Xiaojun Huang1, Liaojun Zhang2,*, Hanbo Cui1, Gaoxing Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.049124

    Abstract This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method (DQM) for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution. Firstly, based on the first-order shear deformation theory, the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement, transverse displacement, and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section. Then, ignoring the shear deformation of the beam section and only considering… More >

  • Open Access

    REVIEW

    Progress in Mechanical Modeling of Implantable Flexible Neural Probes

    Xiaoli You1,2,3,#, Ruiyu Bai1,2,3,4,#, Kai Xue1,2,3, Zimo Zhang1,2,3, Minghao Wang5, Xuanqi Wang1,2,3, Jiahao Wang1,2,3, Jinku Guo1,2, Qiang Shen3, Honglong Chang3, Xu Long6,*, Bowen Ji1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.049047

    Abstract Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue, thus as important tools for brain science research, as well as diagnosis and treatment of brain diseases. However, the rigid neural probes, such as Utah arrays, Michigan probes, and metal microfilament electrodes, are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation, which leads to a significant degradation in the signal quality with the implantation time. In recent years, flexible neural electrodes are rapidly developed with less damage to biological tissues, excellent biocompatibility, and mechanical compliance to… More >

  • Open Access

    ARTICLE

    Modeling the Interaction between Vacancies and Grain Boundaries during Ductile Fracture

    Mingjian Li, Ping Yang*, Pengyang Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048334

    Abstract The experimental results in previous studies have indicated that during the ductile fracture of pure metals, vacancies aggregate and form voids at grain boundaries. However, the physical mechanism underlying this phenomenon remains not fully understood. This study derives the equilibrium distribution of vacancies analytically by following thermodynamics and the micromechanics of crystal defects. This derivation suggests that vacancies cluster in regions under hydrostatic compression to minimize the elastic strain energy. Subsequently, a finite element model is developed for examining more general scenarios of interaction between vacancies and grain boundaries. This model is first verified and validated through comparison with some… More >

  • Open Access

    ARTICLE

    Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design

    Kun Yan1, Yunyu Wang2, Jun Yan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048877

    Abstract Topology optimization of thermal-fluid coupling problems has received widespread attention. This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design. The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends, ensuring separation between the two fluid domains. Additionally, a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient. Furthermore, a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers. This program leverages parallel computing, significantly reducing the time required for the topology optimization process. To… More >

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization of 2D Structures Using Convolutional Neural Networks

    Jiaxiang Luo1,2, Weien Zhou2,3, Bingxiao Du1,*, Daokui Li1, Wen Yao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048118

    Abstract In recent years, there has been significant research on the application of deep learning (DL) in topology optimization (TO) to accelerate structural design. However, these methods have primarily focused on solving binary TO problems, and effective solutions for multi-material topology optimization (MMTO) which requires a lot of computing resources are still lacking. Therefore, this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design. The framework employs convolutional neural network (CNN) to construct a surrogate model for solving MMTO, and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any… More >

  • Open Access

    ARTICLE

    Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite

    Seyed Mohammad Reza Abtahi1, Saeid Ansari Sadrabadi2,*, Gholam Hosein Rahimi1, Gaurav Singh2, Hamid Abyar3, Daniele Amato4, Luigi Federico5

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.047575

    Abstract Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure. One of the methods used in their repairs is the use of layered composites. The composite used must have the necessary strength. Therefore, the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes, including ASME PCC-2, ASME B31.8S, ASME B31.4, ISO 24817 and ASME B31.G. In addition, the experimental tests are replicated numerically using the finite element method. Setting the strain gauges at different distances from the defect location, can reduce the nonlinear effects, deformation, and fluctuations due to… More >

Displaying 1-10 on page 1 of 552. Per Page