Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (555)
  • Open Access

    ARTICLE

    Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design

    Kun Yan1, Yunyu Wang2, Jun Yan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048877

    Abstract Topology optimization of thermal-fluid coupling problems has received widespread attention. This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design. The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends, ensuring separation between the two fluid domains. Additionally, a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient. Furthermore, a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers. This program leverages parallel computing, significantly reducing the time required for the topology optimization process. To… More >

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization of 2D Structures Using Convolutional Neural Networks

    Jiaxiang Luo1,2, Weien Zhou2,3, Bingxiao Du1,*, Daokui Li1, Wen Yao2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048118

    Abstract In recent years, there has been significant research on the application of deep learning (DL) in topology optimization (TO) to accelerate structural design. However, these methods have primarily focused on solving binary TO problems, and effective solutions for multi-material topology optimization (MMTO) which requires a lot of computing resources are still lacking. Therefore, this paper proposes the framework of multiphase topology optimization using deep learning to accelerate MMTO design. The framework employs convolutional neural network (CNN) to construct a surrogate model for solving MMTO, and the obtained surrogate model can rapidly generate multi-material structure topologies in negligible time without any… More >

  • Open Access

    ARTICLE

    Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite

    Seyed Mohammad Reza Abtahi1, Saeid Ansari Sadrabadi2,*, Gholam Hosein Rahimi1, Gaurav Singh2, Hamid Abyar3, Daniele Amato4, Luigi Federico5

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.047575

    Abstract Repairs of corroded high-pressure pipelines are essential for fluids transportation under high pressure. One of the methods used in their repairs is the use of layered composites. The composite used must have the necessary strength. Therefore, the experiments and analytical solutions presented in this paper are performed according to the relevant standards and codes, including ASME PCC-2, ASME B31.8S, ASME B31.4, ISO 24817 and ASME B31.G. In addition, the experimental tests are replicated numerically using the finite element method. Setting the strain gauges at different distances from the defect location, can reduce the nonlinear effects, deformation, and fluctuations due to… More >

  • Open Access

    ARTICLE

    Development of a Three-Dimensional Multiscale Octree SBFEM for Viscoelastic Problems of Heterogeneous Materials

    Xu Xu1, Xiaoteng Wang1, Haitian Yang1, Zhenjun Yang2, Yiqian He1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048199

    Abstract The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms (DOFs). A basic framework of the Multiscale Scaled Boundary Finite Element Method (MsSBFEM) was presented in our previous works, but those works only addressed two-dimensional problems. In order to solve more realistic problems, a three-dimensional MsSBFEM is further developed in this article. In the proposed method, the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales, the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse… More >

  • Open Access

    ARTICLE

    Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection

    Deng Yang1, Chong Zhou1,*, Xuemeng Wei2, Zhikun Chen3, Zheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048049

    Abstract In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The Whale Optimization Algorithm (WOA) is… More >

  • Open Access

    ARTICLE

    Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism

    Jing-Doo Wang1, Chayadi Oktomy Noto Susanto1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048955

    Abstract A significant obstacle in intelligent transportation systems (ITS) is the capacity to predict traffic flow. Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately. However, accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors. This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory (Conv-BiLSTM) with attention mechanisms. Prior studies neglected to include data pertaining to factors such as holidays, weather conditions, and vehicle types, which are interconnected… More >

  • Open Access

    ARTICLE

    Proactive Caching at the Wireless Edge: A Novel Predictive User Popularity-Aware Approach

    Yunye Wan1, Peng Chen2, Yunni Xia1,*, Yong Ma3, Dongge Zhu4, Xu Wang5, Hui Liu6, Weiling Li7, Xianhua Niu2, Lei Xu8, Yumin Dong9

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048723

    Abstract Mobile Edge Computing (MEC) is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible. In an MEC environment, servers are deployed closer to mobile terminals to exploit storage infrastructure, improve content delivery efficiency, and enhance user experience. However, due to the limited capacity of edge servers, it remains a significant challenge to meet the changing, timevarying, and customized needs for highly diversified content of users. Recently, techniques for caching content at the edge are becoming popular for addressing the above challenges. It is capable of filling the communication gap between the… More >

  • Open Access

    ARTICLE

    A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation

    Hao Qi1, Mohamed Sharaf2, Andres Annuk3, Adrian Ilinca4, Mohamed A. Mohamed5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048672

    Abstract Hot dry rock (HDR) is rich in reserve, widely distributed, green, low-carbon, and has broad development potential and prospects. In this paper, a distributionally robust optimization (DRO) scheduling model for a regionally integrated energy system (RIES) considering HDR co-generation is proposed. First, the HDR-enhanced geothermal system (HDR-EGS) is introduced into the RIES. HDR-EGS realizes the thermoelectric decoupling of combined heat and power (CHP) through coordinated operation with the regional power grid and the regional heat grid, which enhances the system wind power (WP) feed-in space. Secondly, peak-hour loads are shifted using price demand response guidance in the context of time-of-day… More >

  • Open Access

    ARTICLE

    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.048839

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in the objective function to reduce… More >

  • Open Access

    ARTICLE

    Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives

    Nasser Sweilam1, Seham Al-Mekhlafi2,*, Aya Ahmed3, Ahoud Alsheri4, Emad Abo-Eldahab3

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.047896

    Abstract In this paper, two crossover hybrid variable-order derivatives of the cancer model are developed. Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators. The existence, uniqueness, and stability of the proposed model are discussed. Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models. Comparative studies with generalized fifth-order Runge-Kutta method are given. Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented. We have showcased the efficiency of the proposed method and garnered robust empirical… More >

Displaying 11-20 on page 2 of 555. Per Page