Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (555)
  • Open Access

    ARTICLE

    Effect of Data Augmentation of Renal Lesion Image by Nine-layer Convolutional Neural Network in Kidney CT

    Liying Wang1 , Zhiqiang Xu2, Shuihua Wang3,4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.010753

    Abstract Artificial Intelligence (AI) becomes one hotspot in the field of the medical images analysis and provides rather promising solution. Although some research has been explored in smart diagnosis for the common diseases of urinary system, some problems remain unsolved completely A nine-layer Convolutional Neural Network (CNN) is proposed in this paper to classify the renal Computed Tomography (CT) images. Four group of comparative experiments prove the structure of this CNN is optimal and can achieve good performance with average accuracy about 92.07 ± 1.67%. Although our renal CT data is not very large, we do augment the training data by… More >

  • Open Access

    ARTICLE

    A State-Based Peridynamic Formulation for Functionally Graded Euler-Bernoulli Beams

    Zhenghao Yang, Erkan Oterkus*, Selda Oterkus

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.010804

    Abstract In this study, a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams. The equation of motion is developed by using Lagrange’s equation and Taylor series. Both axial and transverse displacements are taken into account as degrees of freedom. Four different boundary conditions are considered including pinned support-roller support, pinned support-pinned support, clamped-clamped and clamped-free. Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions. More >

  • Open Access

    ARTICLE

    A Local Sparse Screening Identification Algorithm with Applications

    Hao Li1,2, Zhixia Wang1,2, Wei Wang1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.010061

    Abstract Extracting nonlinear governing equations from noisy data is a central challenge in the analysis of complicated nonlinear behaviors. Despite researchers follow the sparse identification nonlinear dynamics algorithm (SINDy) rule to restore nonlinear equations, there also exist obstacles. One is the excessive dependence on empirical parameters, which increases the difficulty of data pre-processing. Another one is the coexistence of multiple coefficient vectors, which causes the optimal solution to be drowned in multiple solutions. The third one is the composition of basic function, which is exclusively applicable to specific equations. In this article, a local sparse screening identification algorithm (LSSI) is proposed… More >

  • Open Access

    ARTICLE

    Subinterval Decomposition-Based Interval Importance Analysis Method

    Wenxuan Wang*, Xiaoyi Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.09006

    Abstract The importance analysis method represents a powerful tool for quantifying the impact of input uncertainty on the output uncertainty. When an input variable is described by a specific interval rather than a certain probability distribution, the interval importance measure of input interval variable can be calculated by the traditional non-probabilistic importance analysis methods. Generally, the non-probabilistic importance analysis methods involve the Monte Carlo simulation (MCS) and the optimization-based methods, which both have high computational cost. In order to overcome this problem, this study proposes an interval important analytical method avoids the time-consuming optimization process. First, the original performance function is… More >

  • Open Access

    ARTICLE

    Fractional-Order Model for Multi-Drug Antimicrobial Resistance

    M. F. Elettreby1, 2, *, Ali S. Alqahtani1, E. Ahmed2

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.09194

    Abstract Drug resistance is one of the most serious phenomena in financial, economic and medical terms. The present paper proposes and investigates a simple mathematical fractional-order model for the phenomenon of multi-drug antimicrobial resistance. The model describes the dynamics of the susceptible and three kinds of infected populations. The first class of the infected society responds to the first antimicrobial drug but resists to the second one. The second infected individuals react to the second antimicrobial drug but resist to the first one. The third class shows resistance to both of the two drugs. We formulate the model and associate it… More >

  • Open Access

    ARTICLE

    3D Multilayered Turtle Shell Models for Image Steganography

    Ji-Hwei Horng1, Juan Lin2,*, Yanjun Liu3, Chin-Chen Chang13,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.09355

    Abstract By embedding secret data into cover images, image steganography can produce non-discriminable stego-images. The turtle shell model for data hiding is an excellent method that uses a reference matrix to make a good balance between image quality and embedding capacity. However, increasing the embedding capacity by extending the area of basic structures of the turtle shell model usually leads to severe degradation of image quality. In this research, we innovatively extend the basic structure of the turtle shell model into a three-dimensional (3D) space. Some intrinsic properties of the original turtle shell model are well preserved in the 3D version.… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow in Aorta with Dilation: A Comparison between Laminar and LES Modeling Methods

    Lijian Xu1, Tianyang Yang2, Lekang Yin3, Ye Kong2, Yuri Vassilevski4,5, Fuyou Liang1,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.010719

    Abstract Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease. Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed, the majority of existing computational model studies adopted the laminar flow assumption (LFA) in the treatment of sub-grid flow variables. So far, it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation. In the present study, we addressed the issue in the context of a specific aortopathy, namely aortic dilation, which is… More >

  • Open Access

    ARTICLE

    Numerical Simulation on Oil Spilling of Submarine Pipeline and Its Evolution on Sea Surface

    Yi Wang*, Mohan Lin

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.09810

    Abstract Due to the interaction and corrosion of the seawater, submarine pipelines are easy to be broken to spill oil. The special environment of subsea restricts the technical development of pipeline maintenance. Therefore, the study on the oil spilling model of submarine pipeline is very important for predicting the movement and diffusion of spilled oil, so that oil spilling traces and relating strategies can be determined. This paper aims to establish an oil spilling model of a submarine pipeline, study the movement characteristics of spilled oil in seawater by numerical simulation, and determine the traces, diffusion range, time to sea surface,… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Architecture for the Classification of Superhero Fashion Products: An Application for Medical-Tech Classification

    Inzamam Mashood Nasir1, Muhammad Attique Khan1,*, Majed Alhaisoni2, Tanzila Saba3, Amjad Rehman3, Tassawar Iqbal4

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.010943

    Abstract Comic character detection is becoming an exciting and growing research area in the domain of machine learning. In this regard, recently, many methods are proposed to provide adequate performance. However, most of these methods utilized the custom datasets, containing a few hundred images and fewer classes, to evaluate the performances of their models without comparing it, with some standard datasets. This article takes advantage of utilizing a standard publicly dataset taken from a competition, and proposes a generic data balancing technique for imbalanced dataset to enhance and enable the in-depth training of the CNN. In addition, to classify the superheroes… More >

  • Open Access

    ARTICLE

    Effect of Absorption of Patch Antenna Signals on Increasing the Head Temperature

    Mohamed Abbas1,3,*, Ali Algahtani2,6, Amir Kessentini2,4,7, Hassen Loukil1,5, Muneer Parayangat1, Thafasal Ijyas1, Abdul Wase Mohammed1

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2020.010304

    Abstract Every new generation of antennas is characterized by increased accuracy and faster transmission speeds. However, patch antennas have been known to damage human health. This type of antenna sends out electromagnetic waves that increase the temperature of the human head and prevent nerve strands from functioning properly. This paper examines the effect of the communication between the patch antenna and the brain on the head’s temperature by developing a hypothetical multi-input model that achieves more accurate results. These inputs are an individual’s blood and tissue, and the emission power of the antenna. These forces depend on the permeability and conductivity… More >

Displaying 531-540 on page 54 of 555. Per Page