Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,350)
  • Open Access

    ARTICLE

    An Analytical Model for Explosive Compaction of Powder to Cylindrical Billets through Axial Detonation

    B. Srivathsa1, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 9-24, 2008, DOI:10.3970/cmc.2008.007.009

    Abstract An analytical model, describing an explosive compaction process performed axially on a powder assembly of cylindrical geometry, is discussed. The powder is encapsulated in a cylindrical metal container surrounded by an explosive pad, which is detonated parallel to the major axis of the compact. The pressure generated in the powder is a function of the nature and the thickness of the explosive material as well as the powder characteristics. The model is based on the principle of shock propagation in powder aggregate and, the detonation as well as the refraction wave characteristics of the explosives. For the purpose of validation… More >

  • Open Access

    ARTICLE

    Limit Strains Comparison during Tube and Sheet Hydroforming and Sheet Stamping Processes by Numerical Simulation

    C. Nikhare1, K. Narasimhan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 1-8, 2008, DOI:10.3970/cmc.2008.007.001

    Abstract Hydroforming is a manufacturing process that uses a fluid medium to form a component by using high internal pressure. Tube and sheet hydroforming has gained increasing interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed parts etc. The main advantage is that the uniform pressure can be transferred to every where at the same time. Forming limit is the limit of the component up to that extent it can be formed safely. While analyzing hydroforming process, it is often assumed that the limit strains are identical as that… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Nonlinear Dynamic Responses of Beams Laminated with Giant Magnetostrictive Actuators

    Haomiao Zhou1,2, Youhe Zhou1,3, Xiaojing Zheng1

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 201-212, 2007, DOI:10.3970/cmc.2007.006.201

    Abstract This paper presents some simulation results of nonlinear dynamic responses for a laminated composite beam embedded by actuators of the giant magnetostrictive material (Terfenol-D) subjected to external magnetic fields, where the giant magnetostrictive materials utilizing the realignment of magnetic moments in response to applied magnetic fields generate nonlinear strains and forces significantly larger than those generated by other smart materials. To utilize the full potential application of the materials in the function and safety designs, e.g., active control of vibrations, the analysis of dynamic responses is requested in the designs as accurately as possible on the basis of those inherent… More >

  • Open Access

    ARTICLE

    A State Space Approach for the Analysis of Doubly Curved Functionally Graded Elastic and Piezoelectric Shells

    Chih-Ping Wu1,2, Kuo-Yen Liu2

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 177-200, 2007, DOI:10.3970/cmc.2007.006.177

    Abstract Based on the three-dimensional (3D) piezoelectricity, we present the exact solutions of simply-supported, doubly curved functionally graded (FG) elastic and piezoelectric shells using a state space approach. A set of the dimensionless coordinates and field variables is introduced in the present formulation to prevent from the ill-conditioned problem in the relevant computation. By means of direct elimination, we reduce the twenty-two basic differential equations to a set of eight state variable equations (or state equations) with variable coefficients of the thickness coordinate. By means of the successive approximation method, we artificially divide the shell into a NL-layered shell and the… More >

  • Open Access

    ARTICLE

    A simple and accurate four-node quadrilateral element using stabilized nodal integration for laminated plates

    H. Nguyen-Van1, N. Mai Duy2, T. Tran-Cong 3

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 159-176, 2007, DOI:10.3970/cmc.2007.006.159

    Abstract This paper reports the development of a simple but efficient and accurate four-node quadrilateral element for models of laminated, anisotropic plate behaviour within the framework of the first-order shear deformation theory. The approach incorporates the strain smoothing method for mesh-free conforming nodal integration into the conventional finite element techniques. The membrane-bending part of the element stiffness matrix is calculated by the line integral on the boundaries of the smoothing elements while the shear part is performed using an independent interpolation field in the natural co-ordinate system. Numerical results show that the element offered here is locking-free for extremely thin laminates,… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Effect of Diffusion and Creep Flow on Cavity Growth

    J. Oh1, N. Katsube2, F.W. Brust3

    CMC-Computers, Materials & Continua, Vol.6, No.3, pp. 129-158, 2007, DOI:10.3970/cmc.2007.006.129

    Abstract In this paper, intergranular cavity growth in regimes, where both surface diffusion and deformation enhanced grain boundary diffusion are important, is studied. In order to continuously simulate the cavity shape evolution and cavity growth rate, a fully-coupled numerical method is proposed. Based on the fully-coupled numerical method, a gradual cavity shape change is predicted and this leads to the adverse effect on the cavity growth rate. As the portion of the cavity volume growth due to jacking and viscoplastic deformation in the total cavity volume growth increases, spherical cavity evolves to V-shaped cavity. The obtained numerical results are physically more… More >

  • Open Access

    ARTICLE

    A Consistent Computation of Magnetization Reversal under a Circularly Polarized Field and an Anisotropy Field

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 117-128, 2007, DOI:10.3970/cmc.2007.006.117

    Abstract In this paper the Landau-Lifshitz equation is subjected to a circularly polarized field in the plane, as well as both a dc field and an anisotropy field along the vertical easy axis perpendicular to the plane. The representation of Landau-Lifshitz equation in the Minkowski space is a Lie-type system. By performing a computation through the Lie-group solvers we can develop a consistent numerical method, which satisfies the consistency condition exactly, and thus can retain the invariant behavior. Then, we use the consistent numerical method to investigate the magnetization reversal, whose switching criterion is displayed through the minimum curve of the… More >

  • Open Access

    ARTICLE

    Flexural-Torsional Buckling and Vibration Analysis of Composite Beams

    E.J. Sapountzakis1, G.C. Tsiatas2

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 103-116, 2007, DOI:10.3970/cmc.2007.006.103

    Abstract In this paper the general flexural-torsional buckling and vibration problems of composite Euler-Bernoulli beams of arbitrarily shaped cross section are solved using a boundary element method. The general character of the proposed method is verified from the formulation of all basic equations with respect to an arbitrary coordinate system, which is not restricted to the principal one. The composite beam consists of materials in contact each of which can surround a finite number of inclusions. It is subjected to a compressive centrally applied load together with arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by… More >

  • Open Access

    ARTICLE

    Cased Hole Flexural Modes in Anisotropic Formations

    Ping’en Li1, Xianyue Su1,2, Youquan Yin1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 93-102, 2007, DOI:10.3970/cmc.2007.006.093

    Abstract Based on the perturbation method, for flexural wave in cased hole in anisotropic formation, the alteration in the phase velocity caused by the differences in elastic constants between anisotropic formation of interest and a reference, or unperturbed isotropic formation is obtained. Assuming the cased hole is well bonded, the Thomson-Haskell transfer matrix method is applied to calculate the dispersion relation of flexural wave in cased hole in unperturbed isotropic formation. Both the cases of a fast and slow formation are considered where the symmetry axis of a transversely isotropic (TI) formation makes an angle with the cased hole axis, the… More >

  • Open Access

    ARTICLE

    A General Equation for Stress Concentration in Countersunk Holes

    Kunigal N. Shivakumar1, Anil Bhargava2, Sameer Hamoush3

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 71-92, 2007, DOI:10.3970/cmc.2007.006.071

    Abstract A detailed and accurate three-dimensional finite element stress analysis was conducted on countersunk rivet holes in a plate subjected to tension loading. The analysis included a wide range of countersunk depths, plate thicknesses, countersunk angles and plate widths. The study confirmed some of the previous results, addressed their differences, provided many new results, and investigated countersunk angle and width effects. Using the detailed FE results and the limiting conditions, a general equation for stress concentration was developed and verified. More >

Displaying 4671-4680 on page 468 of 5350. Per Page