Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,427)
  • Open Access

    ARTICLE

    Active Metamaterials for Modulation and Detection

    Sameer R. Sonkusale1, Wangren Xu1, Saroj Rout1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 301-315, 2014, DOI:10.3970/cmc.2014.039.301

    Abstract This paper illustrates some new concepts in the area of hybrid metamaterials, which are metamaterials that are embedded with active circuit elements such as transistors. Such transistor/metamaterial hybrids can exhibit some exotic electromagnetic properties which can be exploited for unusual and exciting functions. Two specific examples are provided. In one application, terahertz (THz) modulator based on embedding of psuedomorphic high electron mobility transistor (pHEMT) within the metamaterial resonator, all implemented monolithically in a commercial gallium arsenide (GaAs) technology is presented. In another application, a detector array based on metamaterial perfect absorber for room-temperature detection of gigahertz (GHz) radiation within each… More >

  • Open Access

    ARTICLE

    Prediction of Interfacial Cracking due to Differential Drying Shrinkage of Concrete in Precast Shell Pier Cap

    Kyong Pil Jang1, Je kuk Son2, Seung Hee Kwon1,3

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 155-173, 2013, DOI:10.3970/cmc.2013.038.155

    Abstract In a precast shell pier cap, cracking at the interface between the precast shell and the cast-in-place concrete may happen due to differences between the drying shrinkage of the inner and the outer concrete. The objective of this study is to establish a prediction method for interfacial cracking that will consider the real mechanism of differential drying shrinkage and creep. The main parameters used in the analysis were determined from experiments for a concrete mix that is applied to the manufacturing of pier caps. The variation of internal relative humidity over time was first calculated based on the nonlinear moisture… More >

  • Open Access

    ARTICLE

    Process-dependent Thermal-Mechanical Behaviors of an Advanced Thin-Flip-Chip-on-Flex Interconnect Technology with Anisotropic Conductive Film Joints

    Hsien-Chie Cheng1,2, Chien-Hao Ma1, Ching-Feng Yu3, Su-Tsai Lu4, Wen-Hwa Chen2,3

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 129-154, 2013, DOI:10.3970/cmc.2013.038.129

    Abstract User experiences for electronic devices with high portability and flexibility, good intuitive human interfaces and low cost have driven the development of semiconductor technology toward flexible electronics and display. In this study proposes, an advanced flexible interconnect technology is proposed for flexible electronics, in which an ultra-thin IC chip having a great number of micro-bumps is bonded onto a very thin flex substrate using an epoxy-based anisotropic conductive film (ACF) to form fine-pitch and reliable interconnects or joints (herein termed ACF-typed thin-flip-chip-on-flex (TFCOF) technology). The electrical and thermal -mechanical performances of the micro-joints are the key to the feasibility and… More >

  • Open Access

    ARTICLE

    Theoretical Simulation of AlN Nanobelts and Nanorings

    Aurora Costales1, C. J. F. Solano2, E. Francisco1, A. Martín Pendás1

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 105-128, 2013, DOI:10.3970/cmc.2013.038.105

    Abstract An extension of our previously reported periodic cluster model (J. Phys. Chem. C 2008, 112, 6667-6676 ) to nanorings and nanobelts is presented. This new scheme allows for accurately calculating reasonably large nanostructures while preserving a very small number of optimization parameters. The model has been applied to a number of AlN semiconducting structures using ab initio pair potentials. Attention has been paid to the variation of the B1-B4 phase transition pressure as the the size of the structures is varied. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Radiation-Induced Chemical Segregation and Phase Transformation in a Binary System

    Efraín Hernández-Rivera1,2, Veena Tikare1, Lumin Wang2

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 91-103, 2013, DOI:10.3970/cmc.2013.038.091

    Abstract We present the development of a hybrid Monte Carlo-phase field model that is able to simulate radiation induced chemical segregation and the corresponding phase transformation and nano-structure evolution. Under irradiation by a lowenergy ion beam, defects (vacancies) are created and accumulate. In a binary crystalline material, AB, studied in this work, these defects are of the two types A and B and diffuse at different rates. These differential diffusivities are sufficient driving mechanisms for the formation of chemically distinct regions with accompany changes in phases and nano-structure. In this work, we present a model that can simulate these changes by… More >

  • Open Access

    ARTICLE

    Structural Evolutions of the Clusters During the Melting and Coalescence Processes

    Kai Wang1, Guojian Li1, Qiang Wang1,2, Huimin Wang1, Jiaojiao Du1, Jicheng He1

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 79-89, 2013, DOI:10.3970/cmc.2013.038.079

    Abstract Study on the behaviors of the melting and coalescence of clusters in atomic scale may create new structure at nanoscale, which is a very important research field. The structural evolutions of clusters Cu321, Co321, and Ni321 during their melting and coalescence processes were studied using molecular dynamics simulation with a general embedded atom method in this paper. It was found that the geometries of Cu321 and Co321 transformed to icosahedron from fcc near their melting points, which leads to the increase of their melting points. Concerning the coalescence, it was found that Cu atoms easily formed a coating layer on… More >

  • Open Access

    ARTICLE

    Effects of Transverse Shear on Strain Stiffening of Biological Fiber Networks

    H. Jiang1,2, B. Yang1, S. Liu3

    CMC-Computers, Materials & Continua, Vol.38, No.2, pp. 61-77, 2013, DOI:10.3970/cmc.2013.038.061

    Abstract Actin, fibrin and collagen fiber networks are typical hierarchical biological materials formed by bundling fibrils into fibers and branching/adjoining fibers into networks. The bundled fibrils interact with each other through weak van der Waals forces and, in some cases, additional spotted covalent crosslinks. In the present work, we apply Timoshenko's beam theory that takes into account the effect of transverse shear between fibrils in each bundle to study the overall mechanical behaviors of such fiber networks. Previous experimental studies suggested that these fibers are initially loose bundles. Based on the evidence, it is hypothesized that the fibers undergo transitions from… More >

  • Open Access

    ARTICLE

    Phonon Transport of Rough Si/Ge Superlattice Nanotubes

    Yuhang Jing1, Ming Hu2,3

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 43-59, 2013, DOI:10.3970/cmc.2013.038.043

    Abstract Nanostructuring of thermoelectric materials bears promise for manipulating physical parameters to improve the energy conversion efficiency of thermoelectrics. In this paper the thermal transport in Si/Ge superlattice nanotubes is investigated by performing nonequilibrium molecular dynamics simulations aiming at realizing low thermal conductivity by surface roughening. Our calculations revealed that the thermal conductivity of Si/Ge superlattice nanotubes depends nonmonotonically on periodic length and increases as the wall thickness increases. However, the thermal conductivity is not sensitive to the inner diameters due to the strong surface scattering at thin wall thickness. In addition, introducing roughness onto the superlattice nanotubes surface can destroy… More >

  • Open Access

    ARTICLE

    The Analytical and Numerical Study on the Nanoindentation of Nonlinear Elastic Materials

    Qiang Zhang, Qing-Sheng Yang1

    CMC-Computers, Materials & Continua, Vol.37, No.2, pp. 123-134, 2013, DOI:10.3970/cmc.2013.037.123

    Abstract In nanoindentation testing of materials, the analytical/numerical models to connect the indentation load, indentation depth and material properties are crucial for the extraction of mechanical properties. This paper studied the methods of extracting the mechanical properties of nonlinear elastic materials and built general relationships of the indentation load and depth of hyperelastic materials combined with the dimensional analysis and finite element method (FEM). Compared with the elastic contact models and other nonlinear elastic contact models, the proposed models can extract the mechanical properties of nonlinear elastic materials under large deformation simply and effectively. More >

  • Open Access

    ARTICLE

    Regularized meshless method for antiplane piezoelectricity problems with multiple inclusions

    K.H. Chen1,2, J.H. Kao3, J.T. Chen4

    CMC-Computers, Materials & Continua, Vol.9, No.3, pp. 253-280, 2009, DOI:10.3970/cmc.2009.009.253

    Abstract In this paper, solving antiplane piezoelectricity problems with multiple inclusions are attended by using the regularized meshless method (RMM). This is made possible that the troublesome singularity in the MFS disappears by employing the subtracting and adding-back techniques. The governing equations for linearly electro-elastic medium are reduced to two uncoupled Laplace's equations. The representations of two solutions of the two uncoupled system are obtained by using the RMM. By matching interface conditions, the linear algebraic system is obtained. Finally, typical numerical examples are presented and discussed to demonstrate the accuracy of the solutions. More >

Displaying 4701-4710 on page 471 of 5427. Per Page