Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (366)
  • Open Access

    ARTICLE

    Deep Learning-Based Classification of Rotten Fruits and Identification of Shelf Life

    S. Sofana Reka1, Ankita Bagelikar2, Prakash Venugopal2,*, V. Ravi2, Harimurugan Devarajan3

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.043369

    Abstract The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality, flavor and nutritional value. The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers. The impact of rotten fruits can foster harmful bacteria, molds and other microorganisms that can cause food poisoning and other illnesses to the consumers. The overall purpose of the study is to classify rotten fruits, which can affect the taste, texture, and appearance of other fresh fruits, thereby reducing their shelf life. The agriculture and food industries… More >

  • Open Access

    ARTICLE

    A Hybrid Model for Improving Software Cost Estimation in Global Software Development

    Mehmood Ahmed1,3,*, Noraini B. Ibrahim1, Wasif Nisar2, Adeel Ahmed3, Muhammad Junaid3,*, Emmanuel Soriano Flores4, Divya Anand4

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046648

    Abstract Accurate software cost estimation in Global Software Development (GSD) remains challenging due to reliance on historical data and expert judgments. Traditional models, such as the Constructive Cost Model (COCOMO II), rely heavily on historical and accurate data. In addition, expert judgment is required to set many input parameters, which can introduce subjectivity and variability in the estimation process. Consequently, there is a need to improve the current GSD models to mitigate reliance on historical data, subjectivity in expert judgment, inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns. This study introduces a novel hybrid… More >

  • Open Access

    ARTICLE

    Identification of Important FPGA Modules Based on Complex Network

    Senjie Zhang1,2, Jinbo Wang2,*, Shan Zhou2, Jingpei Wang2,3, Zhenyong Zhang4,*, Ruixue Wang2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046355

    Abstract The globalization of hardware designs and supply chains, as well as the integration of third-party intellectual property (IP) cores, has led to an increased focus from malicious attackers on computing hardware. However, existing defense or detection approaches often require additional circuitry to perform security verification, and are thus constrained by time and resource limitations. Considering the scale of actual engineering tasks and tight project schedules, it is usually difficult to implement designs for all modules in field programmable gate array (FPGA) circuits. Some studies have pointed out that the failure of key modules tends to cause greater damage to the… More >

  • Open Access

    ARTICLE

    Feature-Based Augmentation in Sarcasm Detection Using Reverse Generative Adversarial Network

    Derwin Suhartono1,*, Alif Tri Handoyo1, Franz Adeta Junior2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045301

    Abstract Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication. This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network (GAN) based augmentation on diverse datasets, including iSarcasm, SemEval-18, and Ghosh. This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network (RGAN). The proposed RGAN method works by inverting labels between original and synthetic data during the training process. This inversion of labels provides feedback to the generator for generating… More >

  • Open Access

    REVIEW

    A Review on the Application of Deep Learning Methods in Detection and Identification of Rice Diseases and Pests

    Xiaozhong Yu1,2,*, Jinhua Zheng1,2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.043943

    Abstract In rice production, the prevention and management of pests and diseases have always received special attention. Traditional methods require human experts, which is costly and time-consuming. Due to the complexity of the structure of rice diseases and pests, quickly and reliably recognizing and locating them is difficult. Recently, deep learning technology has been employed to detect and identify rice diseases and pests. This paper introduces common publicly available datasets; summarizes the applications on rice diseases and pests from the aspects of image recognition, object detection, image segmentation, attention mechanism, and few-shot learning methods according to the network structure differences; and… More >

  • Open Access

    ARTICLE

    Nonlinear Components of a Block Cipher over Eisenstein Integers

    Mohammad Mazyad Hazzazi1, Muhammad Sajjad2, Zaid Bassfar3, Tariq Shah2,*, Ashwag Albakri4

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.039013

    Abstract In block ciphers, the nonlinear components, also known as substitution boxes (S-boxes), are used with the purpose to induce confusion in cryptosystems. For the last decade, most of the work on designing S-boxes over the points of elliptic curves, chaotic maps, and Gaussian integers has been published. The main purpose of these studies is to hide data and improve the security levels of crypto algorithms. In this work, we design pair of nonlinear components of a block cipher over the residue class of Eisenstein integers (EI). The fascinating features of this structure provide S-boxes pair at a time by fixing… More >

  • Open Access

    ARTICLE

    CFSA-Net: Efficient Large-Scale Point Cloud Semantic Segmentation Based on Cross-Fusion Self-Attention

    Jun Shu1,2, Shuai Wang1,2, Shiqi Yu1,2, Jie Zhang3,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045818

    Abstract Traditional models for semantic segmentation in point clouds primarily focus on smaller scales. However, in real-world applications, point clouds often exhibit larger scales, leading to heavy computational and memory requirements. The key to handling large-scale point clouds lies in leveraging random sampling, which offers higher computational efficiency and lower memory consumption compared to other sampling methods. Nevertheless, the use of random sampling can potentially result in the loss of crucial points during the encoding stage. To address these issues, this paper proposes cross-fusion self-attention network (CFSA-Net), a lightweight and efficient network architecture specifically designed for directly processing large-scale point clouds.… More >

  • Open Access

    ARTICLE

    Software Defect Prediction Method Based on Stable Learning

    Xin Fan1,2,3, Jingen Mao2,3,*, Liangjue Lian2,3, Li Yu1, Wei Zheng2,3, Yun Ge2,3

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045522

    Abstract The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor. In previous software defect prediction studies, transfer learning was effective in solving the problem of inconsistent project data distribution. However, target projects often lack sufficient data, which affects the performance of the transfer learning model. In addition, the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model. To address these problems, this article propose a software defect prediction method based on stable learning (SDP-SL) that combines code… More >

  • Open Access

    ARTICLE

    Multi-Stream Temporally Enhanced Network for Video Salient Object Detection

    Dan Xu*, Jiale Ru, Jinlong Shi

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045258

    Abstract Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models, they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet) to address these problems. It… More >

  • Open Access

    ARTICLE

    Facial Image-Based Autism Detection: A Comparative Study of Deep Neural Network Classifiers

    Tayyaba Farhat1,2, Sheeraz Akram3,*, Hatoon S. AlSagri3, Zulfiqar Ali4, Awais Ahmad3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045022

    Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by significant challenges in social interaction, communication, and repetitive behaviors. Timely and precise ASD detection is crucial, particularly in regions with limited diagnostic resources like Pakistan. This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context. The research involves experimentation with VGG16 and MobileNet models, exploring different batch sizes, optimizers, and learning rate schedulers. In addition, the “Orange” machine learning tool is employed to evaluate classifier performance and automated… More >

Displaying 271-280 on page 28 of 366. Per Page