Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (534)
  • Open Access

    ARTICLE

    Techno-Economic Analysis of a Grid-Connected Waste to Energy Gasification Plant: A Case Study

    Ahmed Abubakar Elwan*, Mohammed Hafiz Habibuddin

    Energy Engineering, Vol.118, No.6, pp. 1681-1701, 2021, DOI:10.32604/EE.2021.016291

    Abstract With population growth around the world, municipal waste disposal and continued energy demand becomes some of the major challenges to deal with. In order to address these, an approach is required for an optimal waste management system that offers the population benefit with a lower environmental impact. This study evaluates the technical-economic and environmental impact analysis of a grid-connected waste to energy (WtE) plant to power a Univerisiti Teknologi Malaysia (UTM) community. The energy recovery potential of the waste stream was assessed using the life cycle assessment (LCA) method with GaBiTM software (version 4). A technical, economic and environmental analysis… More >

  • Open Access

    REVIEW

    Review on Wind Power Development and Relevant Policies between China and Japan

    Lei Wang1, Zekun Wang2,3,4,*, Yingjian Yang2, Shuni Zhou5, Yehong Dong5, Fanghong Zhang5

    Energy Engineering, Vol.118, No.6, pp. 1611-1626, 2021, DOI:10.32604/EE.2021.016010

    Abstract China has abundant wind energy resources and huge development potential among developing countries. Japan is a developed country that planned to increase the use of renewable energy, especially wind energy. This research is aimed at reviewing the development of wind power and relevant policies between China and Japan. Firstly, we introduced the current status of global wind power development, such as the global installed capacity of wind power. The annual development of wind power generation in China and Japan is compared, and the distribution characteristics of wind resources are compared. Furthermore, the market share in China and Japan is introduced.… More >

  • Open Access

    ARTICLE

    A Novel Starting Impulse Suppression Method for Active Power Filter Based on Slowly Rising Curve

    Jianfeng Yang*, Yu Ding

    Energy Engineering, Vol.118, No.6, pp. 1839-1853, 2021, DOI:10.32604/EE.2021.015930

    Abstract With the widespread application of power electronic equipment in the power grid, the harmonic problem of the power grid becomes more pronounced, reducing the efficiency of power production, transmission, and utilization, and interfering with the normal operation of the power grid. Based on the requirements of harmonic suppression and power system protection, a shunt active power filter (SAPF) is proposed as an effective harmonic suppression method. However, there are problems with impulse current and impulse voltage in the starting process of SAPF. Impulse current and impulse voltage cause the power grid and switchgear to bear greater current stress and voltage… More >

  • Open Access

    ARTICLE

    Coal Seam Permeability Improvement and CBM Production Enhancement by Enlarged Borehole: Mechanism and Application

    Xiyuan Li1, Peng Chu2,3,*, Zhuang Lu2,3, Yuanyuan Liu2,3, Zibin Zhu2,3, Jin Gao2,3, Xiaoxue Liao2,3, Tao Yang2,3

    Energy Engineering, Vol.118, No.6, pp. 1811-1825, 2021, DOI:10.32604/EE.2021.015751

    Abstract The permeability is a key factor to determine the efficiency of coalbed methane (CBM) production. The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage. Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage. In this paper, based on the strain-softening model, the stress and permeability model of the coal seam around the enlarged borehole was built, and based on the dual-medium model, the gas migration model in the coal seam was established. Then… More >

  • Open Access

    ARTICLE

    Load Forecasting of the Power System: An Investigation Based on the Method of Random Forest Regression

    Fuyun Zhu, Guoqing Wu*

    Energy Engineering, Vol.118, No.6, pp. 1703-1712, 2021, DOI:10.32604/EE.2021.015602

    Abstract Accurate power load forecasting plays an important role in the power dispatching and security of grid. In this paper, a mathematical model for power load forecasting based on the random forest regression (RFR) was established. The input parameters of RFR model were determined by means of the grid search algorithm. The prediction results for this model were compared with those for several other common machine learning methods. It was found that the coefficient of determination (R2) of test set based on the RFR model was the highest, reaching 0.514 while the corresponding mean absolute error (MAE) and the mean squared… More >

  • Open Access

    ARTICLE

    A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines

    Xiyang Li1,2, Bin Cheng1,2, Hui Zhang1,2,*, Xianghan Zhang1, Zhi Yun1

    Energy Engineering, Vol.118, No.6, pp. 1869-1886, 2021, DOI:10.32604/EE.2021.015542

    Abstract With the continuous increase in the proportional use of wind energy across the globe, the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research. Therefore, it is crucial to accurately analyze the thickness of icing on wind turbine blades, which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas. This paper fully utilized the advantages of the support vector machine (SVM) and back-propagation neural network (BPNN), with the… More >

  • Open Access

    ARTICLE

    Aging Characteristics and Influencing Factors of the Sheds of Composite Insulators in Karst Regions of China

    Wei Zhao1, Miao Jiang2, Jun Dong1, Lee Li2,*

    Energy Engineering, Vol.118, No.6, pp. 1755-1766, 2021, DOI:10.32604/EE.2021.015467

    Abstract In recent years, more and more high-voltage overhead transmission lines were built passing through the karst regions in southwestern China. This type of special landform seems to have an adverse effect on the aging of the sheds of the line suspension composite insulators, which may lead to unexpected flashover and line tripping. In order to find out the particularity of the aging characteristics of insulators operating in the karst regions, samples in operation were selected from both the karst regions and the flatlands. Hydrophobicity, amount of surface contamination, and contaminant composition of the sheds were studied, then a comparison of… More >

  • Open Access

    ARTICLE

    Research on the Flow and Heat Transfer Characteristics of a Water-Cooling Plate in a Heat Dissipation System

    Yukun Lv, Zhuang Wei*, Quanzhi Ge, Fan Yang, Shuang Yang

    Energy Engineering, Vol.118, No.6, pp. 1855-1867, 2021, DOI:10.32604/EE.2021.015248

    Abstract The water-cooling heat dissipation technology can solve the heat dissipation and noise problems of the calculation plate. Therefore, the structural design of the water-cooling plate directly affects its flow and heat transfer characteristics, which restricts the promotion and application of the technology. To this end, the water-cooling plate of a heat dissipation system was taken as the research object, and its flow and heat transfer characteristics were numerical simulated and experimental studied. Through comparative analysis, the rationality of the numerical simulation method was verified. Based on this, three improved schemes of water-cooling plate structure were proposed and numerical simulation was… More >

  • Open Access

    ARTICLE

    Classification and Visualization of Surrounding Rock Mass Stability Based on Multi-Dimensional Cloud Model

    Liming Xue1,*, Wenlong Shen1, Zhixue Zheng2,*, Jiming Chen1, Hongtao Liu3

    Energy Engineering, Vol.118, No.6, pp. 1799-1810, 2021, DOI:10.32604/EE.2021.015124

    Abstract The classification of the stability of surrounding rock is an uncertain system with multiple indices. The Multi-dimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model. Setting each index as a one-dimensional attribute, the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory. The Multi-dimensional cloud generator can calculate the certainty of each grade, and then determine the stability levels of the surrounding rock according to the principle of maximum certainty. Using this model to 5 coal mine roadway surrounding rock examples and comparing the… More >

  • Open Access

    ARTICLE

    Loss Analysis of Electromagnetic Linear Actuator Coupling Control Electromagnetic Mechanical System

    Jiayu Lu1, Qijing Qin1, Cao Tan1,*, Bo Li1, Xinyu Fan2

    Energy Engineering, Vol.118, No.6, pp. 1741-1754, 2021, DOI:10.32604/EE.2021.014977

    Abstract As an energy converter, electromagnetic linear actuators (EMLAs) have been widely used in industries. Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA. In this paper, a multidisciplinary method was proposed for revealing the influence mechanism of load on EMLA’s loss. The motion trajectory of EMLA is planned through tracking differentiator, an adaptive robust control was adopted to compensate the influence of load on motion trajectory. A control-electromagnetic-mechanical coupling model was established and verified experimentally. The influence laws of load change on EMLA’s loss, loss composition and loss distribution were analyzed quantitatively. The results show that… More >

Displaying 391-400 on page 40 of 534. Per Page