Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (883)
  • Open Access

    ARTICLE

    Influence of Brownian Motion, Thermophoresis and Magnetic Effects on a Fluid Containing Nanoparticles Flowing over a Stretchable Cylinder

    Aaqib Majeed1,*, Ahmad Zeeshan2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 525-536, 2024, DOI:10.32604/fdmp.2023.028716

    Abstract The influence of Brownian motion and thermophoresis on a fluid containing nanoparticles flowing over a stretchable cylinder is examined. The classical Navier-Stokes equations are considered in a porous frame. In addition, the Lorentz force is taken into account. The controlling coupled nonlinear partial differential equations are transformed into a system of first order ordinary differential equations by means of a similarity transformation. The resulting system of equations is solved by employing a shooting approach properly implemented in MATLAB. The evolution of the boundary layer and the growing velocity is shown graphically together with the related profiles of concentration and temperature.… More >

  • Open Access

    ARTICLE

    Efficiency of a Modular Cleanroom for Space Applications

    Matthew R. Coburn1, Charlie Young2, Chris Smith2, Graham Schultz2, Miguel Robayo3, Zheng-Tong Xie1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 547-562, 2024, DOI:10.32604/fdmp.2023.028601

    Abstract A prototype cleanroom for hazardous testing and handling of satellites prior to launcher encapsulation, satisfying the ISO8 standard has been designed and analyzed in terms of performances. Unsteady Reynolds Averaged Navier-Stokes (URANS) models have been used to study the related flow field and particulate matter (PM) dispersion. The outcomes of the URANS models have been validated through comparison with equivalent large-eddy simulations. Special attention has been paid to the location and shape of the air intakes and their orientation in space, in order to balance the PM convection and diffusion inside the cleanroom. Forming a cyclone-type flow pattern inside the… More >

  • Open Access

    ARTICLE

    Wellbore Cleaning Degree and Hydraulic Extension in Shale Oil Horizontal Wells

    Xin Ai1,2,*, Mian Chen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 661-670, 2024, DOI:10.32604/fdmp.2023.026819

    Abstract

    The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degree of cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentally by focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontal-well hydraulic extension taking into account the influence of the wellbore cleaning degree on the wellbore pressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulating pressure drop, the drilling pump performance and the formation properties. The analysis shows that… More >

  • Open Access

    ARTICLE

    Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train

    Tian Li1,2,*, Hao Liang1, Zerui Xiang2, Jiye Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 463-473, 2024, DOI:10.32604/fdmp.2023.043618

    Abstract A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains. Using the shear stress transport (SST) k-ω turbulence model, the effect of various vortex generator types on the aerodynamic characteristics of an ICE2 (Inter-city Electricity) train has been investigated. The results indicate that the vortex generators with wider triangle, trapezoid, and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake. This alteration effectively reduces the resistance of the tail car. Meanwhile, the micro-ramp vortex generator with its… More > Graphic Abstract

    Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train

  • Open Access

    ARTICLE

    Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells

    Yongwei Duan, Zhaopeng Zhu, Hui He*, Gaoliang Xuan, Xuemeng Yu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 349-364, 2024, DOI:10.32604/fdmp.2023.042659

    Abstract The gas-water two-phase flow occurring as a result of fracturing fluid flowback phenomena is known to impact significantly the productivity of shale gas well. In this work, this two-phase flow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model (EDFM). This model assumes the region outside the stimulated reservoir volume (SRV) as a single-medium while the SRV region itself is described using a double-medium strategy which can account for the fluid exchange between the matrix and the micro-fractures. The shale gas adsorption, desorption, diffusion, gas slippage effect, fracture stress sensitivity, and… More >

  • Open Access

    ARTICLE

    Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades

    Yuanjun Dai1,2,*, Xin Wei1, Baohua Li1, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 337-348, 2024, DOI:10.32604/fdmp.2023.042434

    Abstract To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades, unworn blades and trailing-edge worn blades have been assessed through relevant modal tests. According to these experiments, the natural frequencies of trailing-edge worn blades −1, −2, and −3 increase the most in the second to fourth order, the fifth order increases in the middle, and the first order increases the least. The damping ratio data indicate that, in general, the first five-order damping ratios of trailing-edge worn blades −1 and trailing-edge worn blades −2 are reduced, and the first five-order damping ratios of trailing-edge worn… More >

  • Open Access

    ARTICLE

    Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/Shrinking Sheet with a Heat Source or Sink

    Parakapali Roja1, Shaik Mohammed Ibrahim2, Thummala Sankar Reddy3, Giulio Lorenzini4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 257-274, 2024, DOI:10.32604/fdmp.2023.042283

    Abstract This study examines the behavior of a micropolar nanofluid flowing over a sheet in the presence of a transverse magnetic field and thermal effects. In addition, chemical (first-order homogeneous) reactions are taken into account. A similarity transformation is used to reduce the system of governing coupled non-linear partial differential equations (PDEs), which account for the transport of mass, momentum, angular momentum, energy and species, to a set of non-linear ordinary differential equations (ODEs). The Runge-Kutta method along with shooting method is used to solve them. The impact of several parameters is evaluated. It is shown that the micro-rotational velocity of… More >

  • Open Access

    ARTICLE

    Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading

    Xinshan Zhuang*, Shunlei Xia, Ruijie Pan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 447-461, 2024, DOI:10.32604/fdmp.2023.042220

    Abstract Clay, as the most common soil used for foundation fill, is widely used in various infrastructure projects. The physical and mechanical properties of clay are influenced by the pore solution environment. This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations. Moreover, the development of cumulative strain in clay is analyzed, and a fitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration, consolidation stress ratio, and cycle number. In particular, the effects of the NaCl solution concentration and consolidation stress… More >

  • Open Access

    ARTICLE

    The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids

    Hao Hu1,2,3, Jian Guan4, Shanfa Tang1,2,3,*, Jialuo Rong1,2,3, Yuanpeng Cheng1,2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 325-335, 2024, DOI:10.32604/fdmp.2023.042055

    Abstract Different drilling fluid systems are designed according to mineral composition, lithology and wellbore stability of different strata. In the present study, the conversion of a non-dispersed polymer drilling fluid into a low potassium anti-collapsing drilling fluid is investigated. Since the two drilling fluids belong to completely different types, the key to this conversion is represented by new inhibitors, dispersants and water-loss agents by which a non-dispersed drilling fluid can be turned into a dispersed drilling fluid while ensuring wellbore stability and reasonable rheology (carrying sand—inhibiting cuttings dispersion). In particular, the (QYZ-1) inhibitors and (FSJSS-2) dispersants are used. The former can… More >

  • Open Access

    ARTICLE

    Characterization of Flame Retardancy and Oil-Water Separation Capacity of Superhydrophobic Silylated Melamine Sponges

    Yongchun Liu1,*, Ni Qiao2, Yanli Yang3, Yanchun Li1, Chunxiao He1, Siyang Wang1, Chengcheng Liu1, Ruixia Lei1, Wang Li4, Wenwen Gao4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 383-400, 2024, DOI:10.32604/fdmp.2023.041928

    Abstract A silylated melamine sponge (SMS) was prepared by two simple steps, namely, immersion and dehydration of a melamine sponge coated with methyltrichlorosilane. The silylated structure of SMS was characterized by FT-IR (Fourier-transform infrared) spectroscopy, SEM (Scanning electron microscopy) and in terms of water contact angles. Its oil-water absorption and separation capacities were measured by FT-IR and UV-visible spectrophotometry. The experimental results have shown that oligomeric silanol covalently bonds by Si−N onto the surface of melamine sponge skeletons. SMS has shown superhydrophobicity with a water contact angle exceeding 150° ± 1°, a better separation efficiency with regard to diesel oil (by 99.31% (wt/wt%)… More >

Displaying 11-20 on page 2 of 883. Per Page