Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,051)
  • Open Access

    ARTICLE

    Steady-State Solution of MHD Flow with Induced Magnetic Field

    Saykat Poddar1, Jui Saha1, Badhan Neogi1, Mohammad Sanjeed Hasan1, Muhammad Minarul Islam1, Giulio Lorenzini2,*, Md. Mahmud Alam3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 233-252, 2025, DOI:10.32604/fdmp.2025.056131 - 06 March 2025

    Abstract This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic (MHD) dissipative and radiative fluid flow, incorporating an induced magnetic field (IMF) and considering a relatively high concentration of foreign mass (accounting for Soret and Dufour effects) over a vertically oriented semi-infinite plate. The governing equations were normalized using boundary layer (BL) approximations. The resulting nonlinear system of partial differential equations (PDEs) was discretized and solved using an efficient explicit finite difference method (FDM). Numerical simulations were conducted using MATLAB R2015a, and the developed numerical code was verified through comparison with another… More >

  • Open Access

    ARTICLE

    Viscous Flow Activation Energy and Short-Term Aging Resistance of SBS-Modified Asphalt Enhanced by PPA Oil-Grinding Activated MoS2

    Shun Chen1,2,3, Yingjie Wang1, Xingyang He1,2,3,*, Ying Su1,2,3, Yingyuan Pan1, Yimin Cao1, Wentian Wang1, Chao Yang1,2,3, Bo Jiang1,2,3, Shaolin Zhang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 387-404, 2025, DOI:10.32604/fdmp.2024.055697 - 06 March 2025

    Abstract Styrene-butadiene-styrene (SBS) modified asphalt (SA) has long found effective applications in road construction materials. When combined with fillers, SBS-modified asphalt has demonstrated promising resistance to fatigue cracking caused by temperature fluctuations and aging. In this study, molybdenum disulfide (MoS2) and polyphosphoric acid (PPA) were ground in naphthenic oil (NO) and subjected to mechanical activation to create PPA-modified MoS2, referred to as OMS-PPA. By blending various ratios of OMS-PPA with SBS-modified asphalt, composite-modified asphalts were successfully developed to enhance their overall properties. To assess the mechanical characteristics and stability of these modified asphalts, various methods were employed,… More > Graphic Abstract

    Viscous Flow Activation Energy and Short-Term Aging Resistance of SBS-Modified Asphalt Enhanced by PPA Oil-Grinding Activated MoS<sub>2</sub>

  • Open Access

    ARTICLE

    Effect of Railway Spacing on Aerodynamic Performance of 600 km/h Maglev Trains Passing Each Other

    Bailong Sun1, Tian Li1,*, Deng Qin1, Yan Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 371-385, 2025, DOI:10.32604/fdmp.2024.055519 - 06 March 2025

    Abstract High-speed maglev trains (HSMTs) can run at high running speeds due to their unique design. The pressure waves that these trains generate while passing each other are therefore very intense, and can even have safety implications. In order to reduce the transient impact of such waves, the standard k-ε turbulence model is used in this work to assess the effect of railway spacing on the aerodynamic loads, pressure and surrounding flow field of 600 km/h maglev trains passing each other in open air. The sliding mesh technique is used to determine the relative motion between the More >

  • Open Access

    ARTICLE

    The Water Flooding Seepage Mechanism in the Inter-Fractures of Horizontal Wells in Tight Oil Reservoirs

    Xinli Zhao1,*, Qianhua Xiao2, Xuewei Liu3, Yu Shi4, Xiangji Dou1, Guoqiang Xing1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 427-444, 2025, DOI:10.32604/fdmp.2024.052646 - 06 March 2025

    Abstract Tight oil reservoirs face significant challenges, including rapid production decline, low recovery rates, and a lack of effective energy replenishment methods. In this study, a novel development model is proposed, based on inter-fracture injection following volumetric fracturing and relying on a high-temperature and high-pressure large-scale physical simulation system. Additionally, the CMG (Computer Modelling Group Ltd., Calgary City, Canada) software is also used to elucidate the impact of various single factors on the production of horizontal wells while filtering out the interference of others. The effects of fracture spacing, fracture half-length, and the injection-production ratio are… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

    Teng Xia1,2, Xiaohui Zhang1,2,*, Ding Ma1,2, Zhi Yang1,2, Xinting Tong3, Yutang Zhao4, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 121-140, 2025, DOI:10.32604/fdmp.2025.058683 - 24 January 2025

    Abstract Smelting with oxygen bottom blowing is one of the main methods used in the frame of copper pyrometallurgy. With this approach, feed materials and oxygen-enriched air are introduced in reversed order to enhance multiphase flow within the furnace. Understanding the flow structure and temperature distribution in this setup is crucial for optimizing production. In this study, gas-liquid interactions, and temperature profiles under varying air-injection conditions are examined by means of numerical simulation for a 3.2 m × 20 m furnace. The results indicate that the high-velocity regions are essentially distributed near the lance within the… More > Graphic Abstract

    Numerical Simulation of Flow and Temperature Distribution in a Bottom-Blown Copper Bath

  • Open Access

    ARTICLE

    Steam Methane Reforming (SMR) Combined with Ship Based Carbon Capture (SBCC) for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas (LNG) Carriers

    Ikram Belmehdi1,*, Boumedienne Beladjine1, Mohamed Djermouni1, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 71-85, 2025, DOI:10.32604/fdmp.2024.058510 - 24 January 2025

    Abstract The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefied natural gas (LNG) carrier. This investigation focuses on integrating two distinct processes—steam methane reforming (SMR) and ship-based carbon capture (SBCC). The first refers to the common practice used to obtain hydrogen from methane (often derived from natural gas), where steam reacts with methane to produce hydrogen and carbon dioxide (CO2). The second refers to capturing the CO2 generated during the SMR process on board ships. By capturing and storing the carbon emissions, the process significantly reduces its… More >

  • Open Access

    REVIEW

    Wind Turbine Composite Blades: A Critical Review of Aeroelastic Modeling and Vibration Control

    Tingrui Liu1, Qinghu Cui1,2, Dan Xu1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 1-36, 2025, DOI:10.32604/fdmp.2024.058444 - 24 January 2025

    Abstract With the gradual increase in the size and flexibility of composite blades in large wind turbines, problems related to aeroelastic instability and blade vibration are becoming increasingly more important. Given their impact on the lifespan of wind turbines, these subjects have become important topics in turbine blade design. In this article, first aspects related to the aeroelastic (structural and aerodynamic) modeling of large wind turbine blades are summarized. Then, two main methods for blade vibration control are outlined (passive control and active control), including the case of composite blades. Some improvement schemes are proposed More > Graphic Abstract

    Wind Turbine Composite Blades: A Critical Review of Aeroelastic Modeling and Vibration Control

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-LiquId Flow in a Horizontal Elbow

    Lihui Ma1, Wei Li1, Yuanyuan Wang1, Pan Zhang1, Lina Wang1, Xinying Liu1, Meiqin Dong2, Xuewen Cao2, Jiang Bian3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 107-119, 2025, DOI:10.32604/fdmp.2024.058295 - 24 January 2025

    Abstract Gas-liquid flow (GLF), especially slug and annular flows in oil and gas gathering and transportation pipelines, become particularly complex inside elbows and can easily exacerbate pipeline corrosion and damage. In this study, FLUENT was used to conduct 3D simulations of slug and annular flow in elbows for different velocities to assess the ensuing changes in terms of pressure. In particular, the multifluid VOF (Volume of Fraction) model was chosen. The results indicate that under both slug and annular flow conditions, the pressure inside the elbow is lower than the outside. As the superficial velocity More >

  • Open Access

    REVIEW

    A Review of the Applications of Nanofluids and Related Hybrid Variants in Flat Tube Car Radiators

    Saeed Dinarvand*, Amirmohammad Abbasi, Sogol Gharsi

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 37-60, 2025, DOI:10.32604/fdmp.2024.057545 - 24 January 2025

    Abstract The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiency of flat tube car radiators. As vehicles become more advanced and demand better thermal performance, traditional coolants are starting to fall short. Nanofluids, which involve tiny nanoparticles dispersed into standard cooling liquids, offer a new solution by significantly improving heat transfer capabilities. The article categorizes the different types of nanofluids (ranging from those based on metals and metal oxides to carbon materials and hybrid combinations) and examines their effects on the improvement of radiator performance. General consensus More >

  • Open Access

    ARTICLE

    Thermo-Hydraulic Performances of Microchannel Heat Sinks with Different Types of Perforated Rectangular Blocks

    Heng Zhao1, Honghua Ma2, Hui Liu1, Xiang Yan1, Huaqing Yu1, Yongjun Xiao1, Xiao Xiao3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 87-105, 2025, DOI:10.32604/fdmp.2024.056577 - 24 January 2025

    Abstract The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks (MCHS) subjected to a uniform heat flux is investigated by means of numerical simulations. Various geometrical configurations are examined, particularly, the combinations of rectangular solid and perforated blocks, used to create a disturbance in the flow. The analysis focuses on several key aspects and related metrics, including the temperature distribution, the mean Fanning friction factor, the pressure drop, the Nusselt number, and the overall heat transfer coefficient across a range of Reynolds numbers (80–870). It is shown that the introduction of such More >

Displaying 21-30 on page 3 of 1051. Per Page