Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Optimization of Truss Structures Using Nature-Inspired Algorithms with Frequency and Stress Constraints

    Sanjog Chhetri Sapkota1,2, Liborio Cavaleri3, Ajaya Khatri4, Siddhi Pandey5, Satish Paudel6, Panagiotis G. Asteris7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069691 - 29 January 2026

    Abstract Optimization is the key to obtaining efficient utilization of resources in structural design. Due to the complex nature of truss systems, this study presents a method based on metaheuristic modelling that minimises structural weight under stress and frequency constraints. Two new algorithms, the Red Kite Optimization Algorithm (ROA) and Secretary Bird Optimization Algorithm (SBOA), are utilized on five benchmark trusses with 10, 18, 37, 72, and 200-bar trusses. Both algorithms are evaluated against benchmarks in the literature. The results indicate that SBOA always reaches a lighter optimal. Designs with reducing structural weight ranging from 0.02%… More >

  • Open Access

    ARTICLE

    PEMFC Performance Degradation Prediction Based on CNN-BiLSTM with Data Augmentation by an Improved GAN

    Xiaolu Wang1,2, Haoyu Sun1, Aiguo Wang1, Xin Xia3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073991 - 27 January 2026

    Abstract To address the issues of insufficient and imbalanced data samples in proton exchange membrane fuel cell (PEMFC) performance degradation prediction, this study proposes a data augmentation-based model to predict PEMFC performance degradation. Firstly, an improved generative adversarial network (IGAN) with adaptive gradient penalty coefficient is proposed to address the problems of excessively fast gradient descent and insufficient diversity of generated samples. Then, the IGAN is used to generate data with a distribution analogous to real data, thereby mitigating the insufficiency and imbalance of original PEMFC samples and providing the prediction model with training data rich More >

  • Open Access

    ARTICLE

    Analysis of Geometrical Arrangement and Packing Material on Heat Generation in Lithium-Ion Battery Banks

    Seenaa Khudhayer Salman1, Shaymaa Husham Abdulmalek2,*, Ali Ahmed Gitan1, Thamer Khalif Salem3, Raaid Rashad Jassem Al-Doury3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073940 - 27 January 2026

    Abstract Operating Lithium-ion batteries at their temperature limits is a challenging design task due to explosion risk at high temperatures and rapid degradation at low temperatures. Depending on the battery package design, those risks can be solved with passive solutions, which require no active cooling or heating. The current work aims to optimize the pack design and materials of the type-NCR18650B battery based on a wide range of operation temperature. The lower limit was denoted by cold case while the maximum limit was expressed by hot case. A combined analytical-numerical approach was developed to model the… More >

  • Open Access

    ARTICLE

    Modelling and Analysis of Enhanced Power Generation by Recovering Waste Heat from Fallujah White Cement Factory for Clean Energy Sustainability

    Abdulrazzak Akroot1, Kayser Aziz Ameen2, Haitham M. Ibrahim3, Hasanain A. Abdul Wahhab3,*, Miqdam T. Chaichan4

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073702 - 27 January 2026

    Abstract Improving energy efficiency and lowering negative environmental impact through waste heat recovery (WHR) is a critical step toward sustainable cement manufacturing. This study analyzes advanced cogeneration systems for recovering waste heat from the Fallujah White Cement Plant in Iraq. The novelty of this work lies in its direct application and comparative thermodynamic analysis of three distinct cogeneration cycles—the Organic Rankine Cycle, the Single-Flash Steam Cycle, and the Dual-Pressure Steam Cycle—within the Iraqi cement industry, a context that has not been widely studied. The main objective is to evaluate and compare these models to determine the… More > Graphic Abstract

    Modelling and Analysis of Enhanced Power Generation by Recovering Waste Heat from Fallujah White Cement Factory for Clean Energy Sustainability

  • Open Access

    ARTICLE

    Experimental Study of Solar-Powered Underfloor Heating in a Defined Space

    Firas Mahmood Younis1,*, Omar Mohammad Hamdoon2, Ayad Younis Abdulla1

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073483 - 27 January 2026

    Abstract This paper presents an experimental analysis of a solar-assisted powered underfloor heating system, designed primarily to boost energy efficiency and achieve reliable desired steady-state temperature in buildings. We thoroughly tested the system’s thermal and operational features by subjecting it to three distinct scenarios that mimicked diverse solar irradiance and environmental conditions. Our findings reveal a strong correlation between variations in solar input and overall system performance. The Solar Fraction (SF), our key energy efficiency metric, varied significantly across the cases, ranging from 63.1% up to 88.7%. This high reliance on renewables resulted in a substantial… More >

  • Open Access

    ARTICLE

    Design and Development of a Forced-Convection Solar Dryer: Application to Beetroot Cultivated in Béchar, Algeria

    Benali Touhami1, Bennaceur Said1, Atouani Toufik1, Lammari Khelifa2, Ouradj Boudjamaa2, Bounaama Fateh2, Belkacem Draoui2, Lyes Bennamoun3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073329 - 27 January 2026

    Abstract The aim of this study is to design, build, and evaluate an indirect forced convection solar dryer adapted to semi-arid climate, such as that of Béchar situated in the west south region of Algeria. The tested drying system consists of a flat-plate solar collector, an insulated two-chamber drying unit, and an Arduino-controlled device that ensures uniform temperature distribution and real-time monitoring using DHT22 sensors. Drying tests were conducted on locally grown beet slices at air temperatures of 45°C, 60°C, and 80°C, with a constant air velocity of 1.2 m/s and a mass flow rate of… More > Graphic Abstract

    Design and Development of a Forced-Convection Solar Dryer: Application to Beetroot Cultivated in Béchar, Algeria

  • Open Access

    ARTICLE

    Solar Photovoltaic System as a Sustainable Solution for Electric Load Shortage in Baghdad: A Design and Economic Study

    Fadhil M. Oleiwi1, Jaber O. Dahloos2, Amer Resen Kalash3, Hasanain A. Abdul Wahhab3, Miqdam T. Chaichan1,4,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073313 - 27 January 2026

    Abstract In the present study, researchers examined a solar off-grid-connected photovoltaic system for a family house in the city of Baghdad. The design was created with the help of the “How to Design PV Program” and the “Renewable Energy Investment Calculator (REICAL)” software (Version 1.1). In Iraq, the national grid provides around 71% of the overall electricity demand, though this drops to nearly 50% during extremely hot and cold months, where the supply alternates between four hours on and four hours off. During the off periods, power is generated by local generators at high costs. To… More >

  • Open Access

    REVIEW

    A Comparative Review of the Experimental Mitigation Methods of the S-Shaped Diffusers in the Aeroengine Intakes

    Hussain H. Al-Kayiem1,*, Safaa M. Ali2, Sundus S. Al-Azawiey3, Raed A. Jessam3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073303 - 27 January 2026

    Abstract Gas Turbines are among the most important energy systems for aviation and thermal-based power generation. The performance of gas turbine intakes with S-shaped diffusers is vulnerable to flow separation, reversal flow, and pressure distortion, mainly in aggressive S-shaped diffusers. Several methods, including vortex generators and energy promoters, have been proposed and investigated both experimentally and numerically. This paper compiles a review of experimental investigations that have been performed and reported to mitigate flow separation and restore system performance. The operational principles, classifications, design geometries, and performance parameters of S-shaped diffusers are presented to facilitate the… More > Graphic Abstract

    A Comparative Review of the Experimental Mitigation Methods of the S-Shaped Diffusers in the Aeroengine Intakes

  • Open Access

    ARTICLE

    Multi-Time Scale Optimization Scheduling of Data Center Considering Workload Shift and Refrigeration Regulation

    Luyao Liu*, Xiao Liao, Yiqian Li, Shaofeng Zhang

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.072631 - 27 January 2026

    Abstract Data center industries have been facing huge energy challenges due to escalating power consumption and associated carbon emissions. In the context of carbon neutrality, the integration of data centers with renewable energy has become a prevailing trend. To advance the renewable energy integration in data centers, it is imperative to thoroughly explore the data centers’ operational flexibility. Computing workloads and refrigeration systems are recognized as two promising flexible resources for power regulation within data center micro-grids. This paper identifies and categorizes delay-tolerant computing workloads into three types (long-running non-interruptible, long-running interruptible, and short-running) and develops… More >

  • Open Access

    ARTICLE

    Collaboration of GTCC-Powered CAES with Residual Compression Heat for Gas Turbine Inlet Air Heating

    Cheng Yang*, Hanjie Qi, Qing Yin

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070957 - 27 January 2026

    Abstract In order to enhance the off-peak performance of gas turbine combined cycle (GTCC) units, a novel collaborative power generation system (CPG) was proposed. During off-peak operation periods, the remaining power of the GTCC was used to drive the adiabatic compressed air energy storage (ACAES), while the intake air of the GTCC was heated by the compression heat of the ACAES. Based on a 67.3 MW GTCC, under specific demand load distribution, a CPG system and a benchmark system (BS) were designed, both of which used 9.388% of the GTCC output power to drive the ACAES.… More >

Displaying 91-100 on page 10 of 31561. Per Page