Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,225)
  • Open Access

    REVIEW

    A Contemporary Review on Drought Modeling Using Machine Learning Approaches

    Karpagam Sundararajan1, Lalit Garg2,*, Kathiravan Srinivasan4,*, Ali Kashif Bashir3, Jayakumar Kaliappan4, Ganapathy Pattukandan Ganapathy5, Senthil Kumaran Selvaraj6, T. Meena7

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 447-487, 2021, DOI:10.32604/cmes.2021.015528

    Abstract Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Its beginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughts in the last few decades. Predicting future droughts is vital for framing drought management plans to sustain natural resources. The data-driven modelling for forecasting the metrological time series prediction is becoming more powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques have demonstrated success in the drought prediction process and are becoming popular to predict the weather, especially the… More >

  • Open Access

    ARTICLE

    Stability Reliability of the Lateral Vibration of Footbridges Based on the IEVIE-SA Method

    Buyu Jia, Siyi Mao, Quansheng Yan, Xiaolin Yu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 565-582, 2021, DOI:10.32604/cmes.2021.015183

    Abstract Research on the lateral vibrational stability of footbridges has attracted increasing attention in recent years. However, this stability contains a series of complex mechanisms, such as nonlinear vibration, random excitation, and random stability. The Lyapunov method is regarded as an effective tool for analyzing random vibrational stability; however, it is a qualitative method and can only provide a binary judgment for stability. This study proposes a new method, IEVIE–SA, which combines the energy method based on the comparison between the input energy and the variation of intrinsic energy (IEVIE) and the stochastic averaging (SA) method. The improved Nakamura model was… More >

  • Open Access

    ARTICLE

    An Improved Algorithm for the Detection of Fastening Targets Based on Machine Vision

    Jian Yang, Lang Xin#, Haihui Huang*,#, Qiang He

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 779-802, 2021, DOI:10.32604/cmes.2021.014993

    Abstract Object detection plays an important role in the sorting process of mechanical fasteners. Although object detection has been studied for many years, it has always been an industrial problem. Edge-based model matching is only suitable for a small range of illumination changes, and the matching accuracy is low. The optical flow method and the difference method are sensitive to noise and light, and camshift tracking is less effective in complex backgrounds. In this paper, an improved target detection method based on YOLOv3-tiny is proposed. The redundant regression box generated by the prediction network is filtered by soft nonmaximum suppression (NMS)… More >

  • Open Access

    ARTICLE

    An Efficient Meshless Method for Hyperbolic Telegraph Equations in (1 + 1) Dimensions

    Fuzhang Wang1,2, Enran Hou2,*, Imtiaz Ahmad3, Hijaz Ahmad4, Yan Gu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 687-698, 2021, DOI:10.32604/cmes.2021.014739

    Abstract Numerical solutions of the second-order one-dimensional hyperbolic telegraph equations are presented using the radial basis functions. The purpose of this paper is to propose a simple novel direct meshless scheme for solving hyperbolic telegraph equations. This is fulfilled by considering time variable as normal space variable. Under this scheme, there is no need to remove time-dependent variable during the whole solution process. Since the numerical solution accuracy depends on the condition of coefficient matrix derived from the radial basis function method. We propose a simple shifted domain method, which can avoid the full-coefficient interpolation matrix easily. Numerical experiments performed with… More >

  • Open Access

    ARTICLE

    High Order of Accuracy for Poisson Equation Obtained by Grouping of Repeated Richardson Extrapolation with Fourth Order Schemes

    Luciano Pereira da Silva1,*, Bruno Benato Rutyna1, Aline Roberta Santos Righi2, Marcio Augusto Villela Pinto3

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 699-715, 2021, DOI:10.32604/cmes.2021.014239

    Abstract In this article, we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes. The high order solutions obtained traditionally generate non-sparse matrices and the calculation time is very high. We can obtain sparse matrices by applying compact schemes. In this article, we compare compact and exponential finite difference schemes of fourth order. The numerical solutions are calculated in quadruple precision (Real * 16 or extended precision) in FORTRAN language, and iteratively obtained until reaching the round-off error magnitude around 1.0E −32. This procedure is performed to ensure that there is no… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in the decoder part. The number… More >

  • Open Access

    REVIEW

    Multi-Disease Prediction Based on Deep Learning: A Survey

    Shuxuan Xie, Zengchen Yu, Zhihan Lv*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 489-522, 2021, DOI:10.32604/cmes.2021.016728

    Abstract In recent years, the development of artificial intelligence (AI) and the gradual beginning of AI’s research in the medical field have allowed people to see the excellent prospects of the integration of AI and healthcare. Among them, the hot deep learning field has shown greater potential in applications such as disease prediction and drug response prediction. From the initial logistic regression model to the machine learning model, and then to the deep learning model today, the accuracy of medical disease prediction has been continuously improved, and the performance in all aspects has also been significantly improved. This article introduces some… More >

  • Open Access

    ARTICLE

    Computational Analysis of Airflow in Upper Airway under Light and Heavy Breathing Conditions for a Realistic Patient Having Obstructive Sleep Apnea

    W. M. Faizal1,2, N. N. N. Ghazali2,*, C. Y. Khor1, M. Z. Zainon2, Irfan Anjum Badruddin3,4,*, Sarfaraz Kamangar4, Norliza Binti Ibrahim5, Roziana Mohd Razi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 583-604, 2021, DOI:10.32604/cmes.2021.015549

    Abstract Background: Obstructive sleep apnea is a sleeping disorder that has troubled a sizeable population. There is an active area of research on obstructive sleep apnea that intends to better understand airflow behaviors and therefore treat patients more effectively. This paper aims to investigate the airflow characteristics of the upper airway in an obstructive sleep apnea (OSA) patient under light and heavy breathing conditions by using Turbulent Kinetic Energy (TKE), an accurate method in expressing the flow concentration mechanisms of sleeping disorders. It is important to visualize the concentration of flow in the upper airway in order to identify the severity… More >

  • Open Access

    ARTICLE

    Forecasting Model of Photovoltaic Power Based on KPCA-MCS-DCNN

    Huizhi Gou1,2,*, Yuncai Ning1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 803-822, 2021, DOI:10.32604/cmes.2021.015922

    Abstract Accurate photovoltaic (PV) power prediction can effectively help the power sector to make rational energy planning and dispatching decisions, promote PV consumption, make full use of renewable energy and alleviate energy problems. To address this research objective, this paper proposes a prediction model based on kernel principal component analysis (KPCA), modified cuckoo search algorithm (MCS) and deep convolutional neural networks (DCNN). Firstly, KPCA is utilized to reduce the dimension of the feature, which aims to reduce the redundant input vectors. Then using MCS to optimize the parameters of DCNN. Finally, the photovoltaic power forecasting method of KPCA-MCS-DCNN is established. In… More >

  • Open Access

    ARTICLE

    A Multi-Category Brain Tumor Classification Method Bases on Improved ResNet50

    Linguo Li1,2, Shujing Li1,*, Jian Su3

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2355-2366, 2021, DOI:10.32604/cmc.2021.019409

    Abstract Brain tumor is one of the most common tumors with high mortality. Early detection is of great significance for the treatment and rehabilitation of patients. The single channel convolution layer and pool layer of traditional convolutional neural network (CNN) structure can only accept limited local context information. And most of the current methods only focus on the classification of benign and malignant brain tumors, multi classification of brain tumors is not common. In response to these shortcomings, considering that convolution kernels of different sizes can extract more comprehensive features, we put forward the multi-size convolutional kernel module. And considering that… More >

Displaying 11411-11420 on page 1142 of 22225. Per Page