Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    Dynamic Stress around Two Interacting Cylindrical Nano-Inhomogeneities with Surface/Interface Effects

    Le-Le Zhang1, Xue-Qian Fang1, Jin-Xi Liu1, Ji-Hong Ma1

    CMC-Computers, Materials & Continua, Vol.21, No.3, pp. 171-186, 2011, DOI:10.3970/cmc.2011.021.171

    Abstract On the basis of continuum surface elasticity, two interacting cylindrical nano-inhomogeneities with surface/interface effect in a small-sized solid under anti-plane shear waves are investigated, and the dynamic stress around the nano-inhomogeneities is analyzed. The wave function expansion method is used to expressed the wave field around the two nano-inhomogeneities. The total wave field is obtained by the addition theorem for cylindrical wave function. Through analysis, it is found that the distance between the two nano-inhomogeneities shows great effect on the dynamic stress in nano composites. The effect of the distance is also related to the properties of the nano-inhomogeneities and… More >

  • Open Access

    ARTICLE

    Nano-Array Solid Electrode Design for Photoelectrochemical Solar Cells

    W.H. Chen1, C.W. Hong1,2

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 147-170, 2011, DOI:10.3970/cmc.2011.021.147

    Abstract Nanorod/nanowell/nanotube arrays are effective nanotechnologies that can increase the performance of a photo-electrochemical solar cell by increasing the reaction area of the working electrode. However, the confined space due to the nano-arrays also tends to decrease the redox ion diffusivity. This paper describes computer modeling on the ionic diffusion of the active species (I-/I3-) among the nano-arrays of the working electrode material (TiO2). A three dimensional periodic boundary molecular dynamics simulation technique is employed to simulate the nano-scale transport phenomenon. Performance improvement tendency can be evaluated from the Butler-Volmer equation. Simulation results reveal that the increasing reaction area times the… More >

  • Open Access

    ARTICLE

    Stress Distribution in an Infinite Body Containing Two Neighboring Locally Curved Nanofibers

    Surkay D. Akbarov1,2, Resat Kosker3, Nihan T. Cinar3

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 119-146, 2011, DOI:10.3970/cmc.2011.021.119

    Abstract In the present paper, the stress distribution in an infinite elastic body containing two neighboring nanofibers is studied. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the co-phase and anti-phase curving cases are considered. At infinity uniformly distributed normal forces act in the direction of the nanofibers, location. The investigations are carried out in the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity. The normal and shear self-equilibrated… More >

  • Open Access

    ARTICLE

    Study on Shear Test of New Style Automotive Structural Adhesive using Digital Image Correlation Method

    Bin Li1, Guo-biao Yang1, Qi-rong Zhu2, Fan Ni2

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 107-118, 2011, DOI:10.3970/cmc.2011.021.107

    Abstract In this paper, digital image correlation method (DICM) is employed to measure the shear behavior of the spot welding specimens and the ones using adhesive under quasi-static lap shear testing. The images of the specimens' surfaces are captured in real-time by CCD and corresponding computer system. DICM is subsequently used to obtained strain by correlating the images captured before and after deformation. Then, both force-displacement curves and stress-strain curves of the specimens including the cracking load are obtained. The results and analysis show that the mechanical properties of specimens using adhesive compared with the spot welding specimens have an obvious… More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for Multi-Dimensional Backward Wave Problems

    Chih-Wen Chang1

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 87-106, 2011, DOI:10.3970/cmc.2011.021.087

    Abstract We address a new numerical approach to deal with these multi-dimensional backward wave problems (BWPs) in this study. A fictitious time τ is utilized to transform the dependent variable u(x, y, z, t) into a new one by (1+τ)u(x, y, z, t)=: v(x, y, z, t, τ), such that the original wave equation is written as a new hyperbolic type partial differential equation in the space of (x, y, z, t, τ). Besides, a fictitious viscous damping coefficient can be employed to strengthen the stability of numerical integration of the discretized equations by using a group preserving scheme. Several numerical… More >

  • Open Access

    ARTICLE

    Electromagnetic Shielding Effectiveness of Grid-Mesh Films Made of Polyaniline: a Numerical Approach

    S. H. Kwon1, B. R. Kim2, H. K. Lee2,3

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 65-86, 2011, DOI:10.3970/cmc.2011.021.065

    Abstract The electromagnetic shielding effectiveness of grid-mesh films made of polyaniline was numerically investigated, and the optimal size of the polyaniline grid was determined through numerical analyses. The permittivity of polyaniline was first determined from an inverse analysis based on experimental data. A series of numerical analyses were carried out with 225 polyaniline grid-mesh films of different thickness, spacing, and width, and the shielding effectiveness of every grid was examined. In addition to the numerical analysis, the transparency of the grid-mesh films and the amount of polyaniline material required to manufacture the unit grid area (1mx1m) were calculated. The optimal dimensions… More >

  • Open Access

    ARTICLE

    A Coupled Magnetic-Elastic-Thermal Free-Energy Model with Hysteretic Nonlinearity for Terfenol-D Rods

    Tian-Zhong Wang1, You-He Zhou1,2

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 41-64, 2011, DOI:10.3970/cmc.2011.021.041

    Abstract Based on the thermodynamic theory and the postulates of Jiles and Atherton, a general coupled magnetic-elastic-thermal free-energy model with hysteretic nonlinearity is established for Terfenol-D rods, in which the effect of Weiss molecular field is incorporated. The quantitative agreement between numerical simulation results predicted by the free-energy model and existing experimental data confirms the validity and reliability of the obtained nonlinear theoretical model, and indicates that the free-energy model can accurately capture the nonlinear hysteresis characteristic of Terfenol-D. Meanwhile, the free-energy model is employed to investigate the influences of mechanical stress and the temperature on the magnetostrictive effect of Terfenol-D… More >

  • Open Access

    ARTICLE

    Using a Lie-Group Adaptive Method for the Identification of a Nonhomogeneous Conductivity Function and Unknown Boundary Data

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 17-40, 2011, DOI:10.3970/cmc.2011.021.017

    Abstract Only the left-boundary data of temperature and heat flux are used to estimate an unknown parameter function α(x) in Tt(x,t) = ∂(α(x)Tx)/∂x + h(x,t), as well as to recover the right-boundary data. When α(x) is given the above problem is a well-known inverse heat conduction problem (IHCP). This paper solves a mixed-type inverse problem as a combination of the IHCP and the problem of parameter identification, without needing to assume a function form of α(x) a priori, and without measuring extra data as those used by other methods. We use the one-step Lie-Group Adaptive Method (LGAM) for the semi-discretizations of… More >

  • Open Access

    ARTICLE

    Computation of Dyadic Green's Functions for Electrodynamics in Quasi-Static Approximation with Tensor Conductivity

    V.G.Yakhno1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 1-16, 2011, DOI:10.3970/cmc.2011.021.001

    Abstract Homogeneous non-dispersive anisotropic materials, characterized by a positive constant permeability and a symmetric positive definite conductivity tensor, are considered in the paper. In these anisotropic materials, the electric and magnetic dyadic Green's functions are defined as electric and magnetic fields arising from impulsive current dipoles and satisfying the time-dependent Maxwell's equations in quasi-static approximation. A new method of deriving these dyadic Green's functions is suggested in the paper. This method consists of several steps: equations for electric and magnetic dyadic Green's functions are written in terms of the Fourier modes; explicit formulae for the Fourier modes of dyadic Green's functions… More >

  • Open Access

    ARTICLE

    A Nonlinear Optimization Algorithm for Lower Bound Limit and Shakedown Analysis

    G. Gang1, Y.H. Liu2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 251-272, 2010, DOI:10.3970/cmc.2010.020.251

    Abstract Limit and shakedown analysis theorems are the theories of classical plasticity for the direct computation of the load-carrying capacity under proportional and varying loads. Based on Melan's theorem, a solution procedure for lower bound limit and shakedown analysis of three-dimensional (3D) structures is established making use of the finite element method (FEM). The self-equilibrium stress fields are expressed by linear combination of several basic self-equilibrium stress fields with parameters to be determined. These basic self-equilibrium stress fields are elastic responses of the body to imposed permanent strains obtained through elastic-plastic incremental analysis by the three-dimensional finite element method (3D-FEM). The… More >

Displaying 22191-22200 on page 2220 of 22360. Per Page