Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    A New Image Encryption Algorithm Based on Cantor Diagonal Matrix and Chaotic Fractal Matrix

    Hongyu Zhao1,2, Shengsheng Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068426 - 10 November 2025

    Abstract Driven by advancements in mobile internet technology, images have become a crucial data medium. Ensuring the security of image information during transmission has thus emerged as an urgent challenge. This study proposes a novel image encryption algorithm specifically designed for grayscale image security. This research introduces a new Cantor diagonal matrix permutation method. The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix, where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice (CML). The high initial value sensitivity of the… More >

  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

  • Open Access

    ARTICLE

    A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection

    Zheng Zhang1,2, Jie Hao2, Liquan Chen1,*, Tianhao Hou2, Yanan Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068372 - 10 November 2025

    Abstract With the increasing severity of network security threats, Network Intrusion Detection (NID) has become a key technology to ensure network security. To address the problem of low detection rate of traditional intrusion detection models, this paper proposes a Dual-Attention model for NID, which combines Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to design two modules: the FocusConV and the TempoNet module. The FocusConV module, which automatically adjusts and weights CNN extracted local features, focuses on local features that are more important for intrusion detection. The TempoNet module focuses on global information, identifies… More >

  • Open Access

    ARTICLE

    Multiaxial Fatigue Life Prediction of Metallic Specimens Using Deep Learning Algorithms

    Jing Yang1, Zhiming Liu1,*, Xingchao Li2, Zhongyao Wang3, Beitong Li1, Kaiyang Liu1, Wang Long4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068353 - 10 November 2025

    Abstract Accurately predicting fatigue life under multiaxial fatigue damage conditions is essential for ensuring the safety of critical components in service. However, due to the complexity of fatigue failure mechanisms, achieving accurate multiaxial fatigue life predictions remains challenging. Traditional multiaxial fatigue prediction models are often limited by specific material properties and loading conditions, making it difficult to maintain reliable life prediction results beyond these constraints. This paper presents a study on the impact of seven key feature quantities on multiaxial fatigue life, using Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), and Fully Connected Neural… More >

  • Open Access

    ARTICLE

    Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images

    Binghong Zhang, Jialing Zhou, Xinye Zhou, Jia Zhao, Jinchun Zhu, Guangpeng Fan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068309 - 10 November 2025

    Abstract Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring, urban planning, and disaster assessment. However, traditional methods exhibit deficiencies in detail recovery and noise suppression, particularly when processing complex landscapes (e.g., forests, farmlands), leading to artifacts and spectral distortions that limit practical utility. To address this, we propose an enhanced Super-Resolution Generative Adversarial Network (SRGAN) framework featuring three key innovations: (1) Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing; (2) A multi-loss joint optimization strategy… More >

  • Open Access

    ARTICLE

    LinguTimeX a Framework for Multilingual CTC Detection Using Explainable AI and Natural Language Processing

    Omar Darwish1, Shorouq Al-Eidi2, Abdallah Al-Shorman1, Majdi Maabreh3, Anas Alsobeh4, Plamen Zahariev5, Yahya Tashtoush6,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068266 - 10 November 2025

    Abstract Covert timing channels (CTC) exploit network resources to establish hidden communication pathways, posing significant risks to data security and policy compliance. Therefore, detecting such hidden and dangerous threats remains one of the security challenges. This paper proposes LinguTimeX, a new framework that combines natural language processing with artificial intelligence, along with explainable Artificial Intelligence (AI) not only to detect CTC but also to provide insights into the decision process. LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely. LinguTimeX demonstrates strong effectiveness in detecting CTC across… More >

  • Open Access

    ARTICLE

    High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework

    Zheng Yao*, Puqing Chang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068248 - 10 November 2025

    Abstract As Internet of Things (IoT) applications expand, Mobile Edge Computing (MEC) has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices. Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies, conflicting objectives, and limited resources. This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC. We jointly consider task heterogeneity, high-dimensional objectives, and flexible resource scheduling, modeling the problem as a Many-objective optimization. To solve it, we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on More >

  • Open Access

    ARTICLE

    Motion In-Betweening via Frequency-Domain Diffusion Model

    Qiang Zhang1, Shuo Feng1, Shanxiong Chen2, Teng Wan1, Ying Qi1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068247 - 10 November 2025

    Abstract Human motion modeling is a core technology in computer animation, game development, and human-computer interaction. In particular, generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge. Existing methods typically rely on dense keyframe inputs or complex prior structures, making it difficult to balance motion quality and plausibility under conditions such as sparse constraints, long-term dependencies, and diverse motion styles. To address this, we propose a motion generation framework based on a frequency-domain diffusion model, which aims to better model complex motion distributions and enhance generation… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer

    Yingyong Zou*, Yu Zhang, Long Li, Tao Liu, Xingkui Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068246 - 10 November 2025

    Abstract Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments. However, due to the nonlinearity and non-stationarity of collected vibration signals, single-modal methods struggle to capture fault features fully. This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion. The method first employs the Hippopotamus Optimization Algorithm (HO) to optimize the number of modes in Variational Mode Decomposition (VMD) to achieve optimal modal decomposition performance. It combines Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to extract temporal features… More >

  • Open Access

    ARTICLE

    CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation

    Qianqian Hu, Chuhan Li, Mohan Zhang, Fang Liu*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.068225 - 10 November 2025

    Abstract Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform, the demands of visual communication keep increasing for promoting traditional cultural artifacts online. As an effective medium, posters serve to attract public attention and facilitate broader engagement with cultural artifacts. However, existing poster generation methods mainly rely on fixed templates and manual design, which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts. Therefore, we propose CAPGen, an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language More >

Displaying 531-540 on page 54 of 31589. Per Page