Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning

    Ayla Ocak1, Ümit Işıkdağ2, Gebrail Bekdaş1,*, Sinan Melih Nigdeli1, Sanghun Kim3, Zong Woo Geem4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2899-2924, 2024, DOI:10.32604/cmes.2023.030418 - 15 December 2023

    Abstract Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures. The base isolators may lose their damping capacity over time due to environmental or dynamic effects. This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-term isolator life. In this study, an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time. With the developed model, the required damping capacity of the isolator… More >

  • Open Access

    ARTICLE

    Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process

    Qixin Lan1, Binqiang Chen1,*, Bin Yao1, Wangpeng He2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2825-2844, 2024, DOI:10.32604/cmes.2023.030378 - 15 December 2023

    Abstract The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the tool will generate significant noise and vibration, negatively impacting the accuracy of the forming and the surface integrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wear state and promptly replace any heavily worn tools to guarantee the quality of the cutting. The conventional tool wear monitoring models, which are based on machine learning, are specifically built for the intended cutting conditions. However, these models require retraining when… More >

  • Open Access

    ARTICLE

    Modeling Geometrically Nonlinear FG Plates: A Fast and Accurate Alternative to IGA Method Based on Deep Learning

    Se Li1, Tiantang Yu1,*, Tinh Quoc Bui2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2793-2808, 2024, DOI:10.32604/cmes.2023.030278 - 15 December 2023

    Abstract Isogeometric analysis (IGA) is known to show advanced features compared to traditional finite element approaches. Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functional grading (FG). However, the procedure is usually complex and often is time-consuming. We thus put forward a deep learning method to model the geometrically nonlinear bending behavior of FG plates, bypassing the complex IGA simulation process. A long bidirectional short-term memory (BLSTM) recurrent neural network is trained using the load and gradient index as inputs and the displacement responses as outputs. The nonlinear relationship between More >

  • Open Access

    ARTICLE

    Enhanced Temporal Correlation for Universal Lesion Detection

    Muwei Jian1,2,*, Yue Jin1, Hui Yu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3051-3063, 2024, DOI:10.32604/cmes.2023.030236 - 15 December 2023

    Abstract Universal lesion detection (ULD) methods for computed tomography (CT) images play a vital role in the modern clinical medicine and intelligent automation. It is well known that single 2D CT slices lack spatial-temporal characteristics and contextual information compared to 3D CT blocks. However, 3D CT blocks necessitate significantly higher hardware resources during the learning phase. Therefore, efficiently exploiting temporal correlation and spatial-temporal features of 2D CT slices is crucial for ULD tasks. In this paper, we propose a ULD network with the enhanced temporal correlation for this purpose, named TCE-Net. The designed TCE module is More >

  • Open Access

    ARTICLE

    The Optimization Design of the Nozzle Section for the Water Jet Propulsion System Applied in Jet Skis

    Cheng-Yeh Li, Jui-Hsiang Kao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2277-2304, 2024, DOI:10.32604/cmes.2023.030215 - 15 December 2023

    Abstract The performance of a water jet propulsion system is related to the inlet duct, rotor, stator, and nozzle. Generally, the flow inlet design must fit the bottom line of the hull, and the design of the inlet duct is often limited by stern space. The entire section, from the rotor to the nozzle through the stator, must be designed based on system integration in that the individual performance of these three components will influence each other. Particularly, the section from the rotor to the nozzle significantly impacts the performance of a water jet propulsion system.… More >

  • Open Access

    ARTICLE

    Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model

    Chenxi Xiu1,2,*, Xihua Chu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2305-2338, 2024, DOI:10.32604/cmes.2023.030194 - 15 December 2023

    Abstract This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials. By utilizing this model, the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information. The microstructures under consideration can be classified into three categories: a medium-dense microstructure, a dense microstructure consisting of one-sized particles, and a dense microstructure consisting of two-sized particles. Subsequently, the Cosserat elastoplastic model, along with its finite element formulation, is derived using the extended Drucker-Prager yield criteria. To investigate failure behaviors, numerical simulations of granular materials with different microstructures are conducted using… More >

  • Open Access

    ARTICLE

    An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data

    Hong Sun1, Fangquan Yang2, Peiwen Zhang3,*, Yang Jiao4, Yunxiang Zhao5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2549-2569, 2024, DOI:10.32604/cmes.2023.030131 - 15 December 2023

    Abstract With the development of the integration of aviation safety and artificial intelligence, research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management, but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry. Therefore, an improved risk assessment algorithm (PS-AE-LSTM) based on long short-term memory network (LSTM) with autoencoder (AE) is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels. Firstly, based on… More >

  • Open Access

    REVIEW

    An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces

    Sheetal Sharma1,2, Kamali Gupta1, Deepali Gupta1, Shalli Rani1,*, Gaurav Dhiman3,4,5,6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2029-2059, 2024, DOI:10.32604/cmes.2023.029997 - 15 December 2023

    Abstract The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making them more intelligent and connected. However, this advancement comes with challenges related to the effectiveness of IoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensure their proper functionality. The success of smart systems relies on their seamless operation and ability to handle faults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore, sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments. To address… More > Graphic Abstract

    An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces

  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938 - 15 December 2023

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field… More >

  • Open Access

    ARTICLE

    A Hybrid Classification and Identification of Pneumonia Using African Buffalo Optimization and CNN from Chest X-Ray Images

    Nasser Alalwan1,*, Ahmed I. Taloba2, Amr Abozeid3, Ahmed Ibrahim Alzahrani1, Ali H. Al-Bayatti4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2497-2517, 2024, DOI:10.32604/cmes.2023.029910 - 15 December 2023

    Abstract An illness known as pneumonia causes inflammation in the lungs. Since there is so much information available from various X-ray images, diagnosing pneumonia has typically proven challenging. To improve image quality and speed up the diagnosis of pneumonia, numerous approaches have been devised. To date, several methods have been employed to identify pneumonia. The Convolutional Neural Network (CNN) has achieved outstanding success in identifying and diagnosing diseases in the fields of medicine and radiology. However, these methods are complex, inefficient, and imprecise to analyze a big number of datasets. In this paper, a new hybrid… More >

Displaying 7381-7390 on page 739 of 31589. Per Page