Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    A Lightweight Road Scene Semantic Segmentation Algorithm

    Jiansheng Peng1,2,*, Qing Yang1, Yaru Hou1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1929-1948, 2023, DOI:10.32604/cmc.2023.043524 - 29 November 2023

    Abstract In recent years, with the continuous deepening of smart city construction, there have been significant changes and improvements in the field of intelligent transportation. The semantic segmentation of road scenes has important practical significance in the fields of automatic driving, transportation planning, and intelligent transportation systems. However, the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges. Therefore, this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues. The model… More >

  • Open Access

    ARTICLE

    DM Code Key Point Detection Algorithm Based on CenterNet

    Wei Wang1, Xinyao Tang2,*, Kai Zhou1, Chunhui Zhao1, Changfa Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1911-1928, 2023, DOI:10.32604/cmc.2023.043233 - 29 November 2023

    Abstract Data Matrix (DM) codes have been widely used in industrial production. The reading of DM code usually includes positioning and decoding. Accurate positioning is a prerequisite for successful decoding. Traditional image processing methods have poor adaptability to pollution and complex backgrounds. Although deep learning-based methods can automatically extract features, the bounding boxes cannot entirely fit the contour of the code. Further image processing methods are required for precise positioning, which will reduce efficiency. Because of the above problems, a CenterNet-based DM code key point detection network is proposed, which can directly obtain the four key… More >

  • Open Access

    ARTICLE

    Recognition of Human Actions through Speech or Voice Using Machine Learning Techniques

    Oscar Peña-Cáceres1,2,*, Henry Silva-Marchan3, Manuela Albert4, Miriam Gil1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1873-1891, 2023, DOI:10.32604/cmc.2023.043176 - 29 November 2023

    Abstract The development of artificial intelligence (AI) and smart home technologies has driven the need for speech recognition-based solutions. This demand stems from the quest for more intuitive and natural interaction between users and smart devices in their homes. Speech recognition allows users to control devices and perform everyday actions through spoken commands, eliminating the need for physical interfaces or touch screens and enabling specific tasks such as turning on or off the light, heating, or lowering the blinds. The purpose of this study is to develop a speech-based classification model for recognizing human actions in… More >

  • Open Access

    ARTICLE

    Shadow Extraction and Elimination of Moving Vehicles for Tracking Vehicles

    Kalpesh Jadav1, Vishal Sorathiya1,*, Walid El-Shafai2, Torki Altameem3, Moustafa H. Aly4, Vipul Vekariya5, Kawsar Ahmed6, Francis M. Bui6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2009-2030, 2023, DOI:10.32604/cmc.2023.043168 - 29 November 2023

    Abstract Shadow extraction and elimination is essential for intelligent transportation systems (ITS) in vehicle tracking application. The shadow is the source of error for vehicle detection, which causes misclassification of vehicles and a high false alarm rate in the research of vehicle counting, vehicle detection, vehicle tracking, and classification. Most of the existing research is on shadow extraction of moving vehicles in high intensity and on standard datasets, but the process of extracting shadows from moving vehicles in low light of real scenes is difficult. The real scenes of vehicles dataset are generated by self on… More >

  • Open Access

    ARTICLE

    Gate-Attention and Dual-End Enhancement Mechanism for Multi-Label Text Classification

    Jieren Cheng1,2, Xiaolong Chen1,*, Wenghang Xu3, Shuai Hua3, Zhu Tang1, Victor S. Sheng4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1779-1793, 2023, DOI:10.32604/cmc.2023.042980 - 29 November 2023

    Abstract In the realm of Multi-Label Text Classification (MLTC), the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches. Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content, often overlooking intrinsic textual cues such as label statistical features. In contrast, these endogenous insights naturally align with the classification task. In our paper, to complement this focus on intrinsic knowledge, we introduce a novel Gate-Attention mechanism. This mechanism adeptly integrates statistical features from the text itself into the semantic… More >

  • Open Access

    ARTICLE

    Approach to Simplify the Development of IoT Systems that Interconnect Embedded Devices Using a Single Program

    Enol Matilla Blanco1, Jordán Pascual Espada1, Rubén Gonzalez Crespo2,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2463-2480, 2023, DOI:10.32604/cmc.2023.042793 - 29 November 2023

    Abstract Many Internet of Things (IoT) systems are based on the intercommunication among different devices and centralized systems. Nowadays, there are several commercial and research platforms available to simplify the creation of such IoT systems. However, developing these systems can often be a tedious task. To address this challenge, a proposed solution involves the implementation of a unified program or script that encompasses the entire system, including IoT devices functionality. This approach is based on an abstraction, integrating the control of the devices in a single program through a programmable object. Subsequently, the proposal processes the More >

  • Open Access

    ARTICLE

    MF2-DMTD: A Formalism and Game-Based Reasoning Framework for Optimized Drone-Type Moving Target Defense

    Sang Seo1, Jaeyeon Lee2, Byeongjin Kim2, Woojin Lee2, Dohoon Kim3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2595-2628, 2023, DOI:10.32604/cmc.2023.042668 - 29 November 2023

    Abstract Moving-target-defense (MTD) fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations. However, the existing naive MTD studies were conducted focusing only on wired network mutations. And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations, such as hostility, mobility, and dependency. Therefore, to solve these conceptual limitations, this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that… More >

  • Open Access

    ARTICLE

    Mobile-Deep Based PCB Image Segmentation Algorithm Research

    Lisang Liu1, Chengyang Ke1,*, He Lin2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2443-2461, 2023, DOI:10.32604/cmc.2023.042582 - 29 November 2023

    Abstract Aiming at the problems of inaccurate edge segmentation, the hole phenomenon of segmenting large-scale targets, and the slow segmentation speed of printed circuit boards (PCB) in the image segmentation process, a PCB image segmentation model Mobile-Deep based on DeepLabv3+ semantic segmentation framework is proposed. Firstly, the DeepLabv3+ feature extraction network is replaced by the lightweight model MobileNetv2, which effectively reduces the number of model parameters; secondly, for the problem of positive and negative sample imbalance, a new loss function is composed of Focal Loss combined with Dice Loss to solve the category imbalance and improve… More >

  • Open Access

    ARTICLE

    Visualization for Explanation of Deep Learning-Based Fault Diagnosis Model Using Class Activation Map

    Youming Guo, Qinmu Wu*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1489-1514, 2023, DOI:10.32604/cmc.2023.042313 - 29 November 2023

    Abstract Permanent magnet synchronous motor (PMSM) is widely used in various production processes because of its high efficiency, fast reaction time, and high power density. With the continuous promotion of new energy vehicles, timely detection of PMSM faults can significantly reduce the accident rate of new energy vehicles, further enhance consumers’ trust in their safety, and thus promote their popularity. Existing fault diagnosis methods based on deep learning can only distinguish different PMSM faults and cannot interpret and analyze them. Convolutional neural networks (CNN) show remarkable accuracy in image data analysis. However, due to the “black… More >

  • Open Access

    ARTICLE

    Swin-PAFF: A SAR Ship Detection Network with Contextual Cross-Information Fusion

    Yujun Zhang*, Dezhi Han, Peng Chen

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2657-2675, 2023, DOI:10.32604/cmc.2023.042311 - 29 November 2023

    Abstract Synthetic Aperture Radar (SAR) image target detection has widespread applications in both military and civil domains. However, SAR images pose challenges due to strong scattering, indistinct edge contours, multi-scale representation, sparsity, and severe background interference, which make the existing target detection methods in low accuracy. To address this issue, this paper proposes a multi-scale fusion framework (Swin-PAFF) for SAR target detection that utilizes the global context perception capability of the Transformer and the multi-layer feature fusion learning ability of the feature pyramid structure (FPN). Firstly, to tackle the issue of inadequate perceptual image context information… More >

Displaying 7951-7960 on page 796 of 31561. Per Page