Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion

    Dan Zhang1, Yu Zhang2, Yiwen Liang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2317-2336, 2023, DOI:10.32604/cmc.2023.038026 - 30 August 2023

    Abstract The dendritic cell algorithm (DCA) is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system. Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA. The loss function of DCA is ambiguous due to its complexity. To reduce the uncertainty, several researchers simplified the algorithm program; some introduced gradient descent to optimize parameters; some utilized searching methods to find the optimal parameter combination. However, these studies are either time-consuming or need to be revised in the case of non-convex… More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Distributed Denial of Service Detection Approach for Early Warning in Internet Exchange Points

    Salem Alhayani*, Diane R. Murphy

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2235-2259, 2023, DOI:10.32604/cmc.2023.038003 - 30 August 2023

    Abstract The Internet service provider (ISP) is the heart of any country’s Internet infrastructure and plays an important role in connecting to the World Wide Web. Internet exchange point (IXP) allows the interconnection of two or more separate network infrastructures. All Internet traffic entering a country should pass through its IXP. Thus, it is an ideal location for performing malicious traffic analysis. Distributed denial of service (DDoS) attacks are becoming a more serious daily threat. Malicious actors in DDoS attacks control numerous infected machines known as botnets. Botnets are used to send numerous fake requests to… More >

  • Open Access

    ARTICLE

    Increasing Crop Quality and Yield with a Machine Learning-Based Crop Monitoring System

    Anas Bilal1,*, Xiaowen Liu1, Haixia Long1,*, Muhammad Shafiq2, Muhammad Waqar3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2401-2426, 2023, DOI:10.32604/cmc.2023.037857 - 30 August 2023

    Abstract Farming is cultivating the soil, producing crops, and keeping livestock. The agricultural sector plays a crucial role in a country’s economic growth. This research proposes a two-stage machine learning framework for agriculture to improve efficiency and increase crop yield. In the first stage, machine learning algorithms generate data for extensive and far-flung agricultural areas and forecast crops. The recommended crops are based on various factors such as weather conditions, soil analysis, and the amount of fertilizers and pesticides required. In the second stage, a transfer learning-based model for plant seedlings, pests, and plant leaf disease More >

  • Open Access

    ARTICLE

    An Efficient Sleep Spindle Detection Algorithm Based on MP and LSBoost

    Fei Wang1,2, Li Li1, Yinxing Wan1, Zhuorong Li1, Lixian Luo3, Bangshun Hu1, Jiahui Pan1,2, Zhenfu Wen4, Haiyun Huang1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2301-2316, 2023, DOI:10.32604/cmc.2023.037727 - 30 August 2023

    Abstract Sleep spindles are an electroencephalogram (EEG) biomarker of non-rapid eye movement (NREM) sleep and have important implications for clinical diagnosis and prognosis. However, it is challenging to accurately detect sleep spindles due to the complexity of the human brain and the uncertainty of neural mechanisms. To improve the reliability and objectivity of sleep spindle detection and to compensate for the limitations of manual annotation, this study proposes a new automatic detection algorithm based on Matching Pursuit (MP) and Least Squares Boosting (LSBoost), where the automatic sleep spindle detection algorithm can help reduce the visual annotation… More >

  • Open Access

    ARTICLE

    Regional Economic Development Trend Prediction Method Based on Digital Twins and Time Series Network

    Runguo Xu*, Xuehan Yu, Xiaoxue Zhao

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1781-1796, 2023, DOI:10.32604/cmc.2023.037293 - 30 August 2023

    Abstract At present, the interpretation of regional economic development (RED) has changed from a simple evaluation of economic growth to a focus on economic growth and the optimization of economic structure, the improvement of economic relations, and the change of institutional innovation. This article uses the RED trend as the research object and constructs the RED index to conduct the theoretical analysis. Then this paper uses the attention mechanism based on digital twins and the time series network model to verify the actual data. Finally, the regional economy is predicted according to the theoretical model. The… More >

  • Open Access

    ARTICLE

    A Survey on Deep Learning-Based 2D Human Pose Estimation Models

    Sani Salisu1,2, A. S. A. Mohamed1,*, M. H. Jaafar3, Ainun S. B. Pauzi1, Hussain A. Younis1,4

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2385-2400, 2023, DOI:10.32604/cmc.2023.035904 - 30 August 2023

    Abstract In this article, a comprehensive survey of deep learning-based (DL-based) human pose estimation (HPE) that can help researchers in the domain of computer vision is presented. HPE is among the fastest-growing research domains of computer vision and is used in solving several problems for human endeavours. After the detailed introduction, three different human body modes followed by the main stages of HPE and two pipelines of two-dimensional (2D) HPE are presented. The details of the four components of HPE are also presented. The keypoints output format of two popular 2D HPE datasets and the most More >

  • Open Access

    ARTICLE

    Deep Learning Based Cyber Event Detection from Open-Source Re-Emerging Social Data

    Farah Mohammad1,*, Saad Al-Ahmadi2, Jalal Al-Muhtadi1,2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1423-1438, 2023, DOI:10.32604/cmc.2023.035741 - 30 August 2023

    Abstract Social media forums have emerged as the most popular form of communication in the modern technology era, allowing people to discuss and express their opinions. This increases the amount of material being shared on social media sites. There is a wealth of information about the threat that may be found in such open data sources. The security of already-deployed software and systems relies heavily on the timely detection of newly-emerging threats to their safety that can be gleaned from such information. Despite the fact that several models for detecting cybersecurity events have been presented, it… More >

  • Open Access

    ARTICLE

    Accelerate Single Image Super-Resolution Using Object Detection Process

    Xiaolin Xing1, Shujie Yang1,*, Bohan Li2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1585-1597, 2023, DOI:10.32604/cmc.2023.035415 - 30 August 2023

    Abstract Image Super-Resolution (SR) research has achieved great success with powerful neural networks. The deeper networks with more parameters improve the restoration quality but add the computation complexity, which means more inference time would be cost, hindering image SR from practical usage. Noting the spatial distribution of the objects or things in images, a two-stage local objects SR system is proposed, which consists of two modules, the object detection module and the SR module. Firstly, You Only Look Once (YOLO), which is efficient in generic object detection tasks, is selected to detect the input images for More >

  • Open Access

    ARTICLE

    An Incentive Mechanism Model for Crowdsensing with Distributed Storage in Smart Cities

    Jiaxing Wang, Lanlan Rui, Yang Yang*, Zhipeng Gao, Xuesong Qiu

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2355-2384, 2023, DOI:10.32604/cmc.2023.034993 - 30 August 2023

    Abstract Crowdsensing, as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information, has received extensive attention in data collection. Since crowdsensing relies on user equipment to consume resources to obtain information, and the quality and distribution of user equipment are uneven, crowdsensing has problems such as low participation enthusiasm of participants and low quality of collected data, which affects the widespread use of crowdsensing. This paper proposes to apply the blockchain to crowdsensing and solve the above challenges by utilizing the characteristics of… More >

  • Open Access

    ARTICLE

    Context Awareness by Noise-Pattern Analysis of a Smart Factory

    So-Yeon Lee1, Jihoon Park1, Dae-Young Kim2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1497-1514, 2023, DOI:10.32604/cmc.2023.034914 - 30 August 2023

    Abstract Recently, to build a smart factory, research has been conducted to perform fault diagnosis and defect detection based on vibration and noise signals generated when a mechanical system is driven using deep-learning technology, a field of artificial intelligence. Most of the related studies apply various audio-feature extraction techniques to one-dimensional raw data to extract sound-specific features and then classify the sound by using the derived spectral image as a training dataset. However, compared to numerical raw data, learning based on image data has the disadvantage that creating a training dataset is very time-consuming. Therefore, we… More >

Displaying 8621-8630 on page 863 of 31589. Per Page