Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    An Efficient IIoT-Based Smart Sensor Node for Predictive Maintenance of Induction Motors

    Majida Kazmi1,*, Maria Tabasum Shoaib1,2, Arshad Aziz3, Hashim Raza Khan1,2, Saad Ahmed Qazi1,2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 255-272, 2023, DOI:10.32604/csse.2023.038464 - 26 May 2023

    Abstract Predictive maintenance is a vital aspect of the industrial sector, and the use of Industrial Internet of Things (IIoT) sensor nodes is becoming increasingly popular for detecting motor faults and monitoring motor conditions. An integrated approach for acquiring, processing, and wirelessly transmitting a large amount of data in predictive maintenance applications remains a significant challenge. This study presents an IIoT-based sensor node for industrial motors. The sensor node is designed to acquire vibration data on the radial and axial axes of the motor and utilizes a hybrid approach for efficient data processing via edge and… More >

  • Open Access

    ARTICLE

    Efficient Explanation and Evaluation Methodology Based on Hybrid Feature Dropout

    Jingang Kim, Suengbum Lim, Taejin Lee*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 471-490, 2023, DOI:10.32604/csse.2023.038413 - 26 May 2023

    Abstract AI-related research is conducted in various ways, but the reliability of AI prediction results is currently insufficient, so expert decisions are indispensable for tasks that require essential decision-making. XAI (eXplainable AI) is studied to improve the reliability of AI. However, each XAI methodology shows different results in the same data set and exact model. This means that XAI results must be given meaning, and a lot of noise value emerges. This paper proposes the HFD (Hybrid Feature Dropout)-based XAI and evaluation methodology. The proposed XAI methodology can mitigate shortcomings, such as incorrect feature weights and… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Sentence Level Sentiment Analysis of COVID-19

    Sundas Rukhsar1, Mazhar Javed Awan1, Usman Naseem2, Dilovan Asaad Zebari3, Mazin Abed Mohammed4,*, Marwan Ali Albahar5, Mohammed Thanoon5, Amena Mahmoud6

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 791-807, 2023, DOI:10.32604/csse.2023.038384 - 26 May 2023

    Abstract Web-blogging sites such as Twitter and Facebook are heavily influenced by emotions, sentiments, and data in the modern era. Twitter, a widely used microblogging site where individuals share their thoughts in the form of tweets, has become a major source for sentiment analysis. In recent years, there has been a significant increase in demand for sentiment analysis to identify and classify opinions or expressions in text or tweets. Opinions or expressions of people about a particular topic, situation, person, or product can be identified from sentences and divided into three categories: positive for good, negative… More >

  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343 - 26 May 2023

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of… More >

  • Open Access

    ARTICLE

    Radon CLF: A Novel Approach for Skew Detection Using Radon Transform

    Yuhang Chen1, Mahdi Bahaghighat2,*, Aghil Esmaeili Kelishomi3, Jingyi Du1,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 675-697, 2023, DOI:10.32604/csse.2023.038234 - 26 May 2023

    Abstract In the digital world, a wide range of handwritten and printed documents should be converted to digital format using a variety of tools, including mobile phones and scanners. Unfortunately, this is not an optimal procedure, and the entire document image might be degraded. Imperfect conversion effects due to noise, motion blur, and skew distortion can lead to significant impact on the accuracy and effectiveness of document image segmentation and analysis in Optical Character Recognition (OCR) systems. In Document Image Analysis Systems (DIAS), skew estimation of images is a crucial step. In this paper, a novel,… More >

  • Open Access

    ARTICLE

    An Efficient Memory Management for Mobile Operating Systems Based on Prediction of Relaunch Distance

    Jaehwan Lee1, Sangoh Park2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 171-186, 2023, DOI:10.32604/csse.2023.038139 - 26 May 2023

    Abstract Recently, various mobile apps have included more features to improve user convenience. Mobile operating systems load as many apps into memory for faster app launching and execution. The least recently used (LRU)-based termination of cached apps is a widely adopted approach when free space of the main memory is running low. However, the LRU-based cached app termination does not distinguish between frequently or infrequently used apps. The app launch performance degrades if LRU terminates frequently used apps. Recent studies have suggested the potential of using users’ app usage patterns to predict the next app launch… More >

  • Open Access

    ARTICLE

    HSPM: A Better Model to Effectively Preventing Open-Source Projects from Dying

    Zhifang Liao1, Fangying Fu1, Yiqi Zhao1, Sui Tan2,3,*, Zhiwu Yu2,3, Yan Zhang4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 431-452, 2023, DOI:10.32604/csse.2023.038087 - 26 May 2023

    Abstract With the rapid development of Open-Source (OS), more and more software projects are maintained and developed in the form of OS. These Open-Source projects depend on and influence each other, gradually forming a huge OS project network, namely an Open-Source Software ECOsystem (OSSECO). Unfortunately, not all OS projects in the open-source ecosystem can be healthy and stable in the long term, and more projects will go from active to inactive and gradually die. In a tightly connected ecosystem, the death of one project can potentially cause the collapse of the entire ecosystem network. How can… More >

  • Open Access

    ARTICLE

    Towards Sustainable Agricultural Systems: A Lightweight Deep Learning Model for Plant Disease Detection

    Sana Parez1, Naqqash Dilshad2, Turki M. Alanazi3, Jong Weon Lee1,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 515-536, 2023, DOI:10.32604/csse.2023.037992 - 26 May 2023

    Abstract A country’s economy heavily depends on agricultural development. However, due to several plant diseases, crop growth rate and quality are highly suffered. Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information. Therefore, the agricultural management system is searching for an automatic early disease detection technique. To this end, an efficient and lightweight Deep Learning (DL)-based framework (E-GreenNet) is proposed to overcome these problems and precisely classify the various diseases. In the end-to-end architecture, a MobileNetV3Small model is utilized as a… More >

  • Open Access

    ARTICLE

    Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm

    Adnan Hasan Bdair Aighuraibawi1,2, Selvakumar Manickam1,*, Rosni Abdullah3, Zaid Abdi Alkareem Alyasseri4,5, Ayman Khallel6, Dilovan Asaad Zebari9, Hussam Mohammed Jasim7, Mazin Mohammed Abed8, Zainb Hussein Arif7

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 553-574, 2023, DOI:10.32604/csse.2023.037948 - 26 May 2023

    Abstract Internet Protocol version 6 (IPv6) is the latest version of IP that goal to host 3.4 × 1038 unique IP addresses of devices in the network. IPv6 has introduced new features like Neighbour Discovery Protocol (NDP) and Address Auto-configuration Scheme. IPv6 needed several protocols like the Address Auto-configuration Scheme and Internet Control Message Protocol (ICMPv6). IPv6 is vulnerable to numerous attacks like Denial of Service (DoS) and Distributed Denial of Service (DDoS) which is one of the most dangerous attacks executed through ICMPv6 messages that impose security and financial implications. Therefore, an Intrusion Detection System (IDS)… More >

  • Open Access

    ARTICLE

    Safety Assessment of Liquid Launch Vehicle Structures Based on Interpretable Belief Rule Base

    Gang Xiang1,2, Xiaoyu Cheng3, Wei He3,4,*, Peng Han3

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 273-298, 2023, DOI:10.32604/csse.2023.037892 - 26 May 2023

    Abstract A liquid launch vehicle is an important carrier in aviation, and its regular operation is essential to maintain space security. In the safety assessment of fluid launch vehicle body structure, it is necessary to ensure that the assessment model can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process. Therefore, a belief rule base with interpretability (BRB-i) assessment method of liquid launch vehicle structure safety status combines data and knowledge. Moreover, an innovative whale optimization algorithm with interpretable constraints is proposed. The experiments are carried out… More >

Displaying 9261-9270 on page 927 of 31561. Per Page