Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    Driving Pattern Profiling and Classification Using Deep Learning

    Meenakshi Malik1, Rainu Nandal1, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 887-906, 2021, DOI:10.32604/iasc.2021.016272

    Abstract The last several decades have witnessed an exponential growth in the means of transport globally, shrinking geographical distances and connecting the world. The automotive industry has grown by leaps and bounds, with millions of new vehicles being sold annually, be it for personal commuting or for public or commodity transport. However, millions of motor vehicles on the roads also mean an equal number of drivers with varying levels of skill and adherence to safety regulations. Very little has been done in the way of exploring and profiling driving patterns and vehicular usage using real world data. This paper focuses on… More >

  • Open Access

    ARTICLE

    Analysis of Roadside Accident Severity on Rural and Urban Roadways

    Fulu Wei1,2, Zhenggan Cai1, Yongqing Guo1,*, Pan Liu2, Zhenyu Wang3, Zhibin Li2

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 753-767, 2021, DOI:10.32604/iasc.2021.014661

    Abstract The differences in traffic accident severity between urban and rural areas have been widely studied, but conclusions are still limited. To explore the factors influencing the occurrence of roadside accidents in urban and rural areas, 3735 roadside traffic accidents from 2017 to 2019 were analyzed. Fourteen variables from the aspects of driver, vehicle, driving environment, and other influencing factors were selected to establish a Bayesian binary logit model of roadside crashes. The deviance information criterion and receiver operating characteristic curve were used to test the goodness of fit for the traffic crash model. The results show that: (1) the Bayesian… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Computer Modelling of Transmission, Spread, Control and Diagnosis of COVID-19

    Yudong Zhang1,*, Qilong Wang2, Sean H. Y. Yuan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 385-387, 2021, DOI:10.32604/cmes.2021.016386

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Discrete Element Modelling of Dynamic Behaviour of Rockfills for Resisting High Speed Projectile Penetration

    Tingting Zhao1, Y. T. Feng2,*, Jie Zhang1, Zhihua Wang1, Zhiyong Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 721-735, 2021, DOI:10.32604/cmes.2021.015913

    Abstract This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour of rockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by the Minkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowski overlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternion based orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures a robust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviour of a… More >

  • Open Access

    ARTICLE

    A Combined Shape and Topology Optimization Based on Isogeometric Boundary Element Method for 3D Acoustics

    Jie Wang, Fuhang Jiang, Wenchang Zhao, Haibo Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 645-681, 2021, DOI:10.32604/cmes.2021.015894

    Abstract A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study. The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points, and in topology sensitivity analysis with respect to the artificial densities of sound absorption material. OpenMP tool in Fortran code is adopted to improve the efficiency of analysis. To consider the features and efficiencies of the two types of optimization methods, this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of… More >

  • Open Access

    ARTICLE

    Robust Topology Optimization of Periodic Multi-Material Functionally Graded Structures under Loading Uncertainties

    Xinqing Li1, Qinghai Zhao1,*, Hongxin Zhang1, Tiezhu Zhang2, Jianliang Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 683-704, 2021, DOI:10.32604/cmes.2021.015685

    Abstract This paper presents a robust topology optimization design approach for multi-material functional graded structures under periodic constraint with load uncertainties. To characterize the random-field uncertainties with a reduced set of random variables, the Karhunen-Loève (K-L) expansion is adopted. The sparse grid numerical integration method is employed to transform the robust topology optimization into a weighted summation of series of deterministic topology optimization. Under dividing the design domain, the volume fraction of each preset gradient layer is extracted. Based on the ordered solid isotropic microstructure with penalization (Ordered-SIMP), a functionally graded multi-material interpolation model is formulated by individually optimizing each preset… More >

  • Open Access

    ARTICLE

    Modeling Additional Twists of Yarn Spun by Lateral Compact Spinning with Pneumatic Groove

    Jindan Lyu1, Longdi Cheng1,*, Bugao Xu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 737-751, 2021, DOI:10.32604/cmes.2021.015153

    Abstract Compact spinning with pneumatic grooves is a spinning process to gather fibers by blended actions of airflow and mechanical forces. Modified from the ring spinning system, the lateral compact spinning with pneumatic grooves can improve yarn appearance and properties due to generated additional twists. In this study, we investigated additional twists of the lateral compact spinning with pneumatic grooves via a finite element (FE) method. An elastic thin rod was used to model a fiber to simulate its dynamic deformation in the three-dimensional space, and the space bar unit was used to simplify the fiber model for the dynamic analysis.… More >

  • Open Access

    ARTICLE

    Quadratic Finite Volume Element Schemes over Triangular Meshes for a Nonlinear Time-Fractional Rayleigh-Stokes Problem

    Yanlong Zhang1, Yanhui Zhou2, Jiming Wu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 487-514, 2021, DOI:10.32604/cmes.2021.014950

    Abstract In this article, we study a 2D nonlinear time-fractional Rayleigh-Stokes problem, which has an anomalous sub-diffusion term, on triangular meshes by quadratic finite volume element schemes. Time-fractional derivative, defined by Caputo fractional derivative, is discretized through formula, and a two step scheme is used to approximate the time first-order derivative at time , where the nonlinear term is approximated by using a matching linearized difference scheme. A family of quadratic finite volume element schemes with two parameters are proposed for the spatial discretization, where the range of values for two parameters are , . For testing the precision of numerical… More >

  • Open Access

    ARTICLE

    Bubble-Enriched Smoothed Finite Element Methods for Nearly-Incompressible Solids

    Changkye Lee1, Sundararajan Natarajan2, Jack S. Hale3, Zeike A. Taylor4, Jurng-Jae Yee1,*, Stéphane P. A. Bordas3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 411-436, 2021, DOI:10.32604/cmes.2021.014947

    Abstract This work presents a locking-free smoothed finite element method (S-FEM) for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity. The proposed method overcomes well-known issues of standard finite element methods (FEM) in the incompressible limit: the over-estimation of stiffness and sensitivity to severely distorted meshes. The concepts of cell-based, edge-based and node-based S-FEMs are extended in this paper to three-dimensions. Additionally, a cubic bubble function is utilized to improve accuracy and stability. For the bubble function, an additional displacement degree of freedom is added at the centroid of the element. Several numerical studies are performed demonstrating… More >

  • Open Access

    ARTICLE

    Dynamical Transmission of Coronavirus Model with Analysis and Simulation

    Muhammad Farman1, Ali Akgül2,*, Aqeel Ahmad1, Dumitru Baleanu3,4,5, Muhammad Umer Saleem6

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 753-769, 2021, DOI:10.32604/cmes.2021.014882

    Abstract COVID-19 acts as a serious challenge to the whole world. Epidemiological data of COVID-19 is collected through media and web sources to analyze and investigate a system of nonlinear ordinary differential equation to understand the outbreaks of this epidemic disease. We analyze the diseases free and endemic equilibrium point including stability of the model. The certain threshold value of the basic reproduction number R0 is found to observe whether population is in disease free state or endemic state. Moreover, the epidemic peak has been obtained and we expect a considerable number of cases. Finally, some numerical results are presented which… More >

Displaying 12291-12300 on page 1230 of 22360. Per Page