Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,360)
  • Open Access

    ARTICLE

    Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration

    Ying Wang1,*, Zheng Yan1, Zhen Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 549-574, 2021, DOI:10.32604/cmes.2021.014727

    Abstract Due to the complex structure and dense weld of the orthotropic steel bridge deck (OSBD), fatigue cracks are prone to occur in the typical welding details. Welding residual stress (WRS) will cause a plastic zone at the crack tip. In this paper, an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced, and the extended finite element method (XFEM) was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation. By judging the stress state of the residual stress field at the crack tip and selecting different… More >

  • Open Access

    ARTICLE

    Laminar and Turbulent Characteristics of the Acoustic/Fluid Dynamics Interactions in a Slender Simulated Solid Rocket Motor Chamber

    Abdelkarim Hegab*, Faisal Albatati, Mohammed Algarni

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 437-468, 2021, DOI:10.32604/cmes.2021.014690

    Abstract In this paper, analytical, computational, and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injection. Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with associated shear stresses. These stresses may cause scouring and, in turn, enhance the heat rate and erosional burning of solid propellant in a real rocket chamber. In this modelling, the unsteady propellant gasification is mimicked by steady-state flow disturbed by end-wall oscillations. The analytical approach is formulated using an asymptotic technique to reduce the full governing equations. The equations that… More >

  • Open Access

    ARTICLE

    A Real-Time Integrated Face Mask Detector to Curtail Spread of Coronavirus

    Shilpa Sethi1, Mamta Kathuria1,*, Trilok Kaushik2

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 389-409, 2021, DOI:10.32604/cmes.2021.014478

    Abstract Effective strategies to control COVID-19 pandemic need high attention to mitigate negatively impacted communal health and global economy, with the brim-full horizon yet to unfold. In the absence of effective antiviral and limited medical resources, many measures are recommended by WHO to control the infection rate and avoid exhausting the limited medical resources. Wearing mask is among the non-pharmaceutical intervention measures that can be used as barrier to primary route of SARS-CoV2 droplets expelled by presymptomatic or asymptomatic individuals. Regardless of discourse on medical resources and diversities in masks, all countries are mandating coverings over nose and mouth in public… More >

  • Open Access

    ARTICLE

    A New Modified Inverse Lomax Distribution: Properties, Estimation and Applications to Engineering and Medical Data

    Abdullah M. Almarashi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 621-643, 2021, DOI:10.32604/cmes.2021.014407

    Abstract In this paper, a modified form of the traditional inverse Lomax distribution is proposed and its characteristics are studied. The new distribution which called modified logarithmic transformed inverse Lomax distribution is generated by adding a new shape parameter based on logarithmic transformed method. It contains two shape and one scale parameters and has different shapes of probability density and hazard rate functions. The new shape parameter increases the flexibility of the statistical properties of the traditional inverse Lomax distribution including mean, variance, skewness and kurtosis. The moments, entropies, order statistics and other properties are discussed. Six methods of estimation are… More >

  • Open Access

    ARTICLE

    An Automated System to Predict Popular Cybersecurity News Using Document Embeddings

    Ramsha Saeed1, Saddaf Rubab1, Sara Asif1, Malik M. Khan1, Saeed Murtaza1, Seifedine Kadry2, Yunyoung Nam3,*, Muhammad Attique Khan4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 533-547, 2021, DOI:10.32604/cmes.2021.014355

    Abstract The substantial competition among the news industries puts editors under the pressure of posting news articles which are likely to gain more user attention. Anticipating the popularity of news articles can help the editorial teams in making decisions about posting a news article. Article similarity extracted from the articles posted within a small period of time is found to be a useful feature in existing popularity prediction approaches. This work proposes a new approach to estimate the popularity of news articles by adding semantics in the article similarity based approach of popularity estimation. A semantically enriched model is proposed which… More >

  • Open Access

    ARTICLE

    A Double-Phase High-Frequency Traveling Magnetic Field Developed for Contactless Stirring of Low-Conducting Liquid Materials

    Xiaodong Wang1,2,*, Ernst Roland3, Fautrelle Yves3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 469-486, 2021, DOI:10.32604/cmes.2021.013597

    Abstract The use of low electrically conducting liquids is more and more widespread. This is the case for molten glass, salt or slag processing, ionic liquids used in biotechnology, batteries in energy storage and metallurgy. The present paper deals with the design of a new electromagnetic induction device that can heat and stir low electrically-conducting liquids. It consists of a resistance-capacity-inductance circuit coupled with a low-conducting liquid load. The device is supplied by a unique electric power source delivering a single-phase high frequency electric current. The main working principle of the circuit is based on a double oscillating circuit inductor connected… More >

  • Open Access

    ARTICLE

    Remote Sensing Monitoring Method Based on BDS-Based Maritime Joint Positioning Model

    Xiang Wang1,2, Jingxian Liu1, Osamah Ibrahim Khalaf3,*, Zhao Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 801-818, 2021, DOI:10.32604/cmes.2021.013568

    Abstract Complicated sea conditions have a serious impact on ship navigation safety and even maritime accidents. Accordingly, this paper proposes a remote sensing monitoring method based on the Beidou Navigation Satellite System (BDS) maritime joint positioning model. This method is mainly based on the BDS and multiple Global Navigation Satellite Systems (GNSS) to build a data fusion model, which can capture more steady positioning, navigation, and timing (PNT) data. Compared with the current Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) mandatory used by the International Maritime Organization (IMO), this model has the characteristics of more accurate positioning data… More >

  • Open Access

    ARTICLE

    Analysis of Turbulent Flow on Tidal Stream Turbine by RANS and BEM

    Younes Noorollahi1,2,*, Mohammad-Javad Ziabakhsh Ganji1, Mohammadmahdi Rezaei1,2, Mojtaba Tahani3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 515-532, 2021, DOI:10.32604/cmes.2021.012386

    Abstract

    Nowadays, concerns arise because of the depletion of fossil fuel resources that forced scientists to develop new energy extraction methods. One of these renewable resources is tidal energy, where Iran has this potential significantly. There are many ways to obtain the kinetic energy of the fluid flow caused by the moon’s gravitational effect on seas. Using horizontal axis tidal turbines is one of the ways to achieve the kinetic energy of the fluid. Since this type of turbine has similar technology to horizontal axis wind turbines, they may be an appropriate choice for constructing a tidal power plant in Iran.… More >

  • Open Access

    ARTICLE

    Classification of Domestic Refuse in Medical Institutions Based on Transfer Learning and Convolutional Neural Network

    Dequan Guo1, Qiao Yang2, Yu-Dong Zhang3, Tao Jiang1, Hanbing Yan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 599-620, 2021, DOI:10.32604/cmes.2021.014119

    Abstract The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions. This matter arouses people’s attention. Traditional artificial waste classification is subjective and cannot be put accurately; moreover, the working environment of sorting is poor and the efficiency is low. Therefore, automated and effective sorting is needed. In view of the current development of deep learning, it can provide a good auxiliary role for classification and realize automatic classification. In this paper, the ResNet-50 convolutional neural network based on the transfer learning method is applied to design the image… More >

  • Open Access

    ARTICLE

    Micro Hierarchical Structure and Mechanical Property of Sparrow Hawk (Accipiter nisus) Feather Shaf

    Yichen Lu1, Zongning Chen1, Enyu Guo1,*, Xiangqing Kong2, Huijun Kang1, Yanjin Xu3, Rengeng Li4, Guohua Fan4, Tongmin Wang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 705-720, 2021, DOI:10.32604/cmes.2021.015426

    Abstract In this study, the real 3D model of the feather shaft that is composed of medulla and cortex is characterized by X-ray computer tomography, and the structural features are quantitatively analyzed. Compression and tensile tests are conducted to evaluate the mechanical performance of the feather shaft and cortex at different regions. The analysis of the 3D model shows that the medulla accounts for ∼70% of the shaft volume and exhibits a closed-cell foam-like structure, with a porosity of 59%. The cells in the medulla show dodecahedron and decahedron morphology and have an equivalent diameter of ∼30 μm. In axial compression,… More >

Displaying 12301-12310 on page 1231 of 22360. Per Page