Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,944)
  • Open Access

    ARTICLE

    Performance of Unidirectional Biocomposite Developed with Piptadeniastrum Africanum Tannin Resin and Urena Lobata Fibers as Reinforcement

    Achille Gnassiri Wedaïna1,2, Antonio Pizzi2, Wolfgang Nzie1, Raidandi Danwe3, Noel Konaï4,*, Siham Amirou2, Cesar Segovia5, Raphaël Kueny5

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012782

    Abstract The Piptadeniastrum Africanum bark tannin extract was characterized using MALDI TOF, ATR-FT MIR. It was used in the development of a resin with Vachellia nilotica extract as a biohardener. This tannin is consisting of Catechin, Quercetin, Chalcone, Gallocatechin, Epigallocatechin gallate, Epicatechin gallate. The gel time of the resin at natural pH (pH = 5.4) is 660 s and its MOE obtained by thermomechanical analysis is 3909 MPa. The tenacity of Urena lobata fibers were tested, woven into unidirectional mats (UD), and used as reinforcement in the development of biocomposite. The fibers tenacity at 20, 30 and 50 mm lengths are… More >

  • Open Access

    ARTICLE

    Effects of Exogenous Manganese (Mn) on Mineral Elements, Polyamines and Antioxidants in Apple Rootstock Malus robusta Rehd.

    Dazhuang Qi1,2,4,#, Meixia Liang1,2,4,#, Fudong Jiang3, Jianzhao Li1,2,4, Xuqiang Qiao1,2,4,*, Hongxia Zhang1,2,4,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2020.013801

    Abstract Manganese (Mn) is one of the essential microelements in all organisms. However, high level of Mn is deleterious to plants. In this study, the effects of exogenous manganese application on mineral element, polyamine (PA) and antioxidant accumulation, as well as polyamine metabolic and antioxidant enzyme activities, were investigated in Malus robusta Rehd., a widely grown apple rootstock. High level of Mn treatments decreased endogenous Mg, Na, K and Ca contents, but increased Zn content, in a Mn-concentration-dependent manner. Polyamine metabolic assays revealed that, except the content of perchloric acid insoluble bound (PIS-bound) spermine, which increased significantly, the contents of putrescine… More >

  • Open Access

    ARTICLE

    Synthesis of Green Adhesive with Tannin Extracted from Eucalyptus Bark for Potential Use in Wood Composites

    Medjda Amari1, Kamel Khimeche1,*, Abdelkader Hima2 , Redouane Chebout3, Abderahmane Mezroua1

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.013680

    Abstract Recently, the exploitation of renewable plant resources in the formulation of adhesives is very promising for their availability at low coast, as well as their richness in biomolecules such as polyphenols. In this way, many research studies tannins extracted from different sources such as mimosa, quebracho, and pine have been the subject of very satisfactory recent studies. In this paper, a new complete characterization of the tannins extracted from the bark of eucalyptus globulus harvested from two regions in Algeria was achieved. The structural characterization enabled us to confirm the richness in condensed tannins, particularly in procyanidin and prodelphinidin units.… More >

  • Open Access

    ARTICLE

    Melt Extrusion of Environmentally Friendly Poly(L-lactic acid)/Sodium Metabisulfite Films for Antimicrobial Packaging Applications

    Norma M. P. Machado1, Gustavo C. Melo1, Matheus F. Camargo1, Giulianna G. Feijó1, Bruna M. S. Putton2, Clarice Steffens2, Rogerio L. Cansian2, Luiz A. Pessan1, Francys K. V. Moreira1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.011081

    Abstract Food packaging materials compounded with antimicrobial additives can substantially diminish the incidence of foodborne diseases. Here, poly(L-lactic acid) (PLA) films containing sodium metabisulfite (NaM) were produced by melt extrusion as an attempt to develop a new biodegradable material with antimicrobial properties for packaging. Life cycle assessment (LCA) simulations revealed that the environmental footprints of the PLA film did not change upon NaM addition, and that NaM is more eco-friendly than silver nanoparticles. The PLA/NaM films with NaM content varying from 0.5 to 5.0 wt.% were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical and mechanical properties determinations.… More >

  • Open Access

    ARTICLE

    Investigation of Heterogeneous Ice Nucleation on the Micro-Cubic Structure Superhydrophobic Surface for Enhancing Icing-Delay Performance

    Senyun Liu1,2, Qinglin Liu1,2, Xian Yi1,2,*, Yizhou Shen4,*, Long Guo1,2, Wenqing Hou4, Haifeng Chen3, Zhen Wang4

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.014158

    Abstract The aim of this study is to explore the heterogeneous ice nucleation behavior based on controllable micro-cubic array structure surfaces from the statistic perspective. To this end, we firstly constructed a group of micro-cubic array structures on silicon substrates by a selective plasma etching technique. After grafting low-free-energy substance, the as-constructed micro-cubic array structure surfaces exhibited higher non-wettability with the water contact angle being up to 150°. On this basis, 500 cycles of freezing and melting processes were accurately recorded to analyze the instantaneous ice nucleation behavior according to the statistical results of freezing temperature. As a consequence, the statistical… More >

  • Open Access

    ARTICLE

    A Promising Wound Dressing from Regenerated Silk Fibroin Sponge with Sustain-ed Release of Silver Nanoparticles

    Yang Li#, Xiaoying Zha#, Xingliang Xiong, Yan Zhang, Ying Feng, Haojiang Xie, Linqing Zhang, Qifeng Jiang*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012271

    Abstract A silk fibroin (SF) spongy wound dressing incorporated with silver nanoparticles (Ag-NPs) was developed for biomedical applications. Ag-NPs were efficiently synthesized in situ via ultra violet (UV) with AgNO3 as precursor and silk fibroin as reducing and protecting agent, respectively. After lyophilization, the formed silk fibroin spongy wound dressing (SFWD) exhibited polyporous morphology and inner lamellae structures, with uniform dispersion of Ag-NPs. The porous structure provided SFWD with the ability to absorb tissue exudatealmost 6 times of its own weight, which could guarantee the sustained release of Ag-NPs. By methanol treatment, SFWD showed much improved mechanical properties and more stable… More >

  • Open Access

    ARTICLE

    Thylakoid Transit Peptide Is Related to the Expression and Localization of NdhB Subunits in Soybean

    Siyi Fu1,#, Tao Yun2,#, Dexuan Ma1, Bingsong Zheng1, Dean Jiang3, Yi He1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2021.013262

    Abstract The chloroplast NAD(P)H dehydrogenase (NDH) complex, as one of the most important photosynthesis protein complexes in thylakoid membrane, is involved in photosystem I (PSI) cyclic electron transport (CEF). Under abiotic environmental stress, the photosynthetic apparatus is susceptible to the damage caused by the strong light illumination. However, the enhancement of NDHdependent CEF could facilitate the alleviation of the damage to the photosynthetic apparatus. The NdhB subunit encoded by chloroplast genome is one of most important subunits of NDH complex and consists of 510 amino acids. Here, according to cloning ndhB from Melrose (cultivated soybean), ACC547 (wild salt-tolerant soybean), S113-6 and… More >

  • Open Access

    ARTICLE

    Development of a Soil Stabilizer for Road Subgrade Based on Original Phosphogypsum

    Zenghuan Gu1, Aiguo Fang2, Sudong Hua1,*, Qingzhou Zhao2, Lidong Sun2, Fan Xia2, Liying Qian3, Xiaojian Ren3

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.011912

    Abstract The research used industrial by-products original phosphogypsum (PG) as the main raw material, slag (SG) and Portland cement (PC) as auxiliary materials, and the optimal additive amount was determined according to the compressive strength value of the sample. Comprehensively evaluate the water resistance and volume stability of the samples, and determine the best formula for new roadbed stabilized materials. The results showed that when the weight ratio of PG, slag and cement was OPG:SG:PC = 6:3:1, and mixed with 5% micro silica fume (MSF) and 3‰ hydroxypropyl methyl cellulose (HPMC), the sample’s comprehensive performance was the best, specifically, the sample’s… More >

  • Open Access

    ARTICLE

    Evaluation of Mechanical and Physical Properties of Pressed Coir Fiber/Epoxy Composite with NaOH and Microwave Treatment of Fiber

    Ilyas Renreng1, Bakri Bakri2,*, Sri Chandrabakty2, Naharuddin2

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2021.012774

    Abstract In this study, the influence of sodium hydroxide (NaOH) treatment and microwave treatment of coir fibers on the mechanical and physical properties of pressed coir fiber/epoxy composite were evaluated. The composite was fabricated with a hand lay-up method with compression molding. Before composite fabrication, pressed coir fiber was treated with NaOH and microwave treatments. Mechanical testing (tensile, flexural, and impact testing) of the composite was conducted. Then, water absorption and thickness swelling testing are also performed. The fractured composite surface morphology after the tensile test was analyzed by scanning electronic microscopy (SEM). The results revealed that tensile, flexural, and impact… More >

  • Open Access

    REVIEW

    Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance

    Nishit Savla1, Raksha Anand2, Soumya Pandit2,*, Ram Prasad3,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2020.011803

    Abstract Microbial fuel cells (MFCs) are an attractive innovation at the nexus of energy and water security for the future. MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step. The material of the anode plays a vital role in increasing the MFC’s power output. The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties. The nanomaterials in anode gives a high surface area, improved electron transfer promotes electroactive biofilm. Enhanced power output in terms of Direct current (DC) can be obtained as the consequence of improved microbe-electrode interaction. However,… More >

Displaying 2791-2800 on page 280 of 2944. Per Page