Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,088)
  • Open Access

    ARTICLE

    MFF-YOLO: A Target Detection Algorithm for UAV Aerial Photography

    Dike Chen1,2,3, Zhiyong Qin2, Ji Zhang2, Hongyuan Wang1,2,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072494

    Abstract To address the challenges of small target detection and significant scale variations in unmanned aerial vehicle (UAV) aerial imagery, which often lead to missed and false detections, we propose Multi-scale Feature Fusion YOLO (MFF-YOLO), an enhanced algorithm based on YOLOv8s. Our approach introduces a Multi-scale Feature Fusion Strategy (MFFS), comprising the Multiple Features C2f (MFC) module and the Scale Sequence Feature Fusion (SSFF) module, to improve feature integration across different network levels. This enables more effective capture of fine-grained details and sequential multi-scale features. Furthermore, we incorporate Inner-CIoU, an improved loss function that uses auxiliary More >

  • Open Access

    ARTICLE

    KPA-ViT: Key Part-Level Attention Vision Transformer for Foreign Body Classification on Coal Conveyor Belt

    Haoxuanye Ji*, Zhiliang Chen, Pengfei Jiang, Ziyue Wang, Ting Yu, Wei Zhang

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.071880

    Abstract Foreign body classification on coal conveyor belts is a critical component of intelligent coal mining systems. Previous approaches have primarily utilized convolutional neural networks (CNNs) to effectively integrate spatial and semantic information. However, the performance of CNN-based methods remains limited in classification accuracy, primarily due to insufficient exploration of local image characteristics. Unlike CNNs, Vision Transformer (ViT) captures discriminative features by modeling relationships between local image patches. However, such methods typically require a large number of training samples to perform effectively. In the context of foreign body classification on coal conveyor belts, the limited availability… More >

  • Open Access

    ARTICLE

    Graph Guide Diffusion Solvers with Noises for Travelling Salesman Problem

    Yan Kong1, Xinpeng Guo2, Chih-Hsien Hsia3,4,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.071269

    Abstract With the development of technology, diffusion model-based solvers have shown significant promise in solving Combinatorial Optimization (CO) problems, particularly in tackling Non-deterministic Polynomial-time hard (NP-hard) problems such as the Traveling Salesman Problem (TSP). However, existing diffusion model-based solvers typically employ a fixed, uniform noise schedule (e.g., linear or cosine annealing) across all training instances, failing to fully account for the unique characteristics of each problem instance. To address this challenge, we present Graph-Guided Diffusion Solvers (GGDS), an enhanced method for improving graph-based diffusion models. GGDS leverages Graph Neural Networks (GNNs) to capture graph structural information… More >

  • Open Access

    ARTICLE

    VMFD: Virtual Meetings Fatigue Detector Using Eye Polygon Area and Dlib Shape Indicator

    Hafsa Sidaq1, Lei Wang1, Sghaier Guizani2,*, Hussain Haider3, Ateeq Ur Rehman4,*, Habib Hamam5,6,7

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.071254

    Abstract Numerous sectors, such as education, the IT sector, and corporate organizations, transitioned to virtual meetings after the COVID-19 crisis. Organizations now seek to assess participants’ fatigue levels in online meetings to remain competitive. Instructors cannot effectively monitor every individual in a virtual environment, which raises significant concerns about participant fatigue. Our proposed system monitors fatigue, identifying attentive and drowsy individuals throughout the online session. We leverage Dlib’s pre-trained facial landmark detector and focus on the eye landmarks only, offering a more detailed analysis for predicting eye opening and closing of the eyes, rather than focusing… More >

  • Open Access

    ARTICLE

    Log-Based Anomaly Detection of System Logs Using Graph Neural Network

    Eman Alsalmi, Abeer Alhuzali*, Areej Alhothali

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.071012

    Abstract Log anomaly detection is essential for maintaining the reliability and security of large-scale networked systems. Most traditional techniques rely on log parsing in the reprocessing stage and utilize handcrafted features that limit their adaptability across various systems. In this study, we propose a hybrid model, BertGCN, that integrates BERT-based contextual embedding with Graph Convolutional Networks (GCNs) to identify anomalies in raw system logs, thereby eliminating the need for log parsing. The BERT module captures semantic representations of log messages, while the GCN models the structural relationships among log entries through a text-based graph. This combination More >

  • Open Access

    ARTICLE

    PMCFusion: A Parallel Multi-Dimensional Complementary Network for Infrared and Visible Image Fusion

    Xu Tao1, Qiang Xiao2, Zhaoqi Jin2, Hao Li1,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070790

    Abstract Image fusion technology aims to generate a more informative single image by integrating complementary information from multi-modal images. Despite the significant progress of deep learning-based fusion methods, existing algorithms are often limited to single or dual-dimensional feature interactions, thus struggling to fully exploit the profound complementarity between multi-modal images. To address this, this paper proposes a parallel multi-dimensional complementary fusion network, termed PMCFusion, for the task of infrared and visible image fusion. The core of this method is its unique parallel three-branch fusion module, PTFM, which pioneers the parallel synergistic perception and efficient integration of… More >

  • Open Access

    ARTICLE

    Dynamic Knowledge Graph Reasoning Based on Distributed Representation Learning

    Qiuru Fu1, Shumao Zhang1, Shuang Zhou1, Jie Xu1,*, Changming Zhao2, Shanchao Li3, Du Xu1,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070493

    Abstract Knowledge graphs often suffer from sparsity and incompleteness. Knowledge graph reasoning is an effective way to address these issues. Unlike static knowledge graph reasoning, which is invariant over time, dynamic knowledge graph reasoning is more challenging due to its temporal nature. In essence, within each time step in a dynamic knowledge graph, there exists structural dependencies among entities and relations, whereas between adjacent time steps, there exists temporal continuity. Based on these structural and temporal characteristics, we propose a model named “DKGR-DR” to learn distributed representations of entities and relations by combining recurrent neural networks More >

  • Open Access

    ARTICLE

    An Optimal Right-Turn Coordination System for Connected and Automated Vehicles at Urban Intersections

    Mahmudul Hasan1, Shuji Doman1, A. S. M. Bakibillah2, Md Abdus Samad Kamal1,*, Kou Yamada1

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.070222

    Abstract Traffic at urban intersections frequently encounters unexpected obstructions, resulting in congestion due to uncooperative and priority-based driving behavior. This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles (CAVs) at single-lane intersections, particularly in the context of left-hand side driving on roads. The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks. We consider that all approaching vehicles share relevant information through vehicular communications. The Intersection Coordination Unit (ICU) processes this information and communicates the optimal crossing or turning times to the vehicles. The primary objective of this… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.069873

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    ARTICLE

    IOTA-Based Authentication for IoT Devices in Satellite Networks

    D. Bernal*, O. Ledesma, P. Lamo, J. Bermejo

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.069746

    Abstract This work evaluates an architecture for decentralized authentication of Internet of Things (IoT) devices in Low Earth Orbit (LEO) satellite networks using IOTA Identity technology. To the best of our knowledge, it is the first proposal to integrate IOTA’s Directed Acyclic Graph (DAG)-based identity framework into satellite IoT environments, enabling lightweight and distributed authentication under intermittent connectivity. The system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) over the Tangle, eliminating the need for mining and sequential blocks. An identity management workflow is implemented that supports the creation, validation, deactivation, and reactivation of IoT devices,… More >

Displaying 1131-1140 on page 114 of 8088. Per Page