Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23,336)
  • Open Access

    ARTICLE

    A High-Accuracy Single Patch Representation of Multi-Patch Geometries with Applications to Isogeometric Analysis

    Jinlan Xu*, Ningning Sun, Gang Xu

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 627-642, 2020, DOI:10.32604/cmes.2020.010341

    Abstract This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications. In isogeometric analysis, multi-patch structure is not easy to achieve high continuity between neighboring patches which will reduce the advantage of isogeometric analysis in a sense. The proposed method can achieve high continuity at surface stitching region with low geometric error, and this technique exploits constructing the approximate surface with several control points are from original surfaces, which guarantees the local feature of the surface can be well-preserved with high precision. With the More >

  • Open Access

    ARTICLE

    Analysis-Aware Modelling of Spacial Curve for Isogeometric Analysis of Timoshenko Beam

    Yang Xia*, Luting Deng, Jian Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 605-626, 2020, DOI:10.32604/cmes.2020.010204

    Abstract Geometric fitting based on discrete points to establish curve structures is an important problem in numerical modeling. The purpose of this paper is to investigate the geometric fitting method for curved beam structure from points, and to get high-quality parametric model for isogeometric analysis. A Timoshenko beam element is established for an initially curved spacial beam with arbitrary curvature. The approximation and interpolation methods to get parametric models of curves from given points are examined, and three strategies of parameterization, meaning the equally spaced method, the chord length method and the centripetal method are considered.… More >

  • Open Access

    ARTICLE

    Resolving Domain Integral Issues in Isogeometric Boundary Element Methods via Radial Integration: A Study of Thermoelastic Analysis

    Shige Wang1, Zhongwang Wang1, Leilei Chen1, Haojie Lian2,3,*, Xuan Peng4, Haibo Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 585-604, 2020, DOI:10.32604/cmes.2020.09904

    Abstract The paper applied the isogeometric boundary element method (IGABEM) to thermoelastic problems. The Non-Uniform Rational B-splines (NURBS) used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation. Due to the existence of thermal stress, the domain integral term appears in the boundary integral equation. We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral. In this way, IGABEM can maintain its advantages in dimensionality reduction and more importantly, seamless integration of CAD and numerical analysis based on boundary More >

  • Open Access

    ARTICLE

    Quantum Risk Assessment Model Based on Two Three-Qubit GHZ States

    Tao Zheng, Yan Chang, Shibin Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 573-584, 2020, DOI:10.32604/cmes.2020.010445

    Abstract With the acceleration of the construction of quantum communication networks, scholars have proposed different quantum communication protocols for different application scenarios. However, few scholars pay attention to the risk assessment process before communication. In this paper, we propose a novel quantum risk assessment model based on quantum teleportation technology with two three-qubit GHZ states. Only by using Bell states measurements (BSMs) and two-qubit projective measurements (PJMs), the communicators can recovery any arbitrary two-qubit state. This protocol can transmit two-dimension risk assessment factors with better security performance. On the one hand, more sufficient evaluation factors allow… More >

  • Open Access

    ARTICLE

    Numerical Characterization of the Annular Flow Behavior and Pressure Loss in Deepwater Drilling Riser

    Chengwen Liu1,*, Lin Zhu1, Xingru Wu2,*, Jian Liang1, Zhaomin Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 561-572, 2020, DOI:10.32604/cmes.2020.010699

    Abstract In drilling a deepwater well, the mud density window is narrow, which needs a precise pressure control to drill the well to its designed depth. Therefore, an accurate characterization of annular flow between the drilling riser and drilling string is critical in well control and drilling safety. Many other factors influencing the change of drilling pressure that should be but have not been studied suffi- ciently. We used numerical method to simulate the process of drill string rotation and vibration in the riser to show that the rotation and transverse vibration of drill string can More >

  • Open Access

    ARTICLE

    Progressive Damage Analysis (PDA) of Carbon Fiber Plates with Out-of-Plane Fold under Pressure

    Tao Zhang, Jinglan Deng*, Jihui Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 545-559, 2020, DOI:10.32604/cmes.2020.09536

    Abstract The out-of-plane fold is a common defect of composite materials during the manufacturing process and will greatly affect the compressive strength as well as the service life. Making it of great importance to investigate the influence of out-of-plane defects to the compressive strength of laminate plates of composite materials, and to understand the patterns of defect evolution. Therefore, the strip method is applied in this article to create out-of-plane defects with different aspect ratios in laminated plates of composite materials, and a compressive performance test is conducted to quantify the influence of out-of-plane defects. The… More >

  • Open Access

    ARTICLE

    A State-Based Peridynamic Formulation for Functionally Graded Euler-Bernoulli Beams

    Zhenghao Yang, Erkan Oterkus*, Selda Oterkus

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 527-544, 2020, DOI:10.32604/cmes.2020.010804

    Abstract In this study, a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams. The equation of motion is developed by using Lagrange’s equation and Taylor series. Both axial and transverse displacements are taken into account as degrees of freedom. Four different boundary conditions are considered including pinned support-roller support, pinned support-pinned support, clamped-clamped and clamped-free. Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow in Aorta with Dilation: A Comparison between Laminar and LES Modeling Methods

    Lijian Xu1, Tianyang Yang2, Lekang Yin3, Ye Kong2, Yuri Vassilevski4,5, Fuyou Liang1,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 509-526, 2020, DOI:10.32604/cmes.2020.010719

    Abstract Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease. Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed, the majority of existing computational model studies adopted the laminar flow assumption (LFA) in the treatment of sub-grid flow variables. So far, it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation. In the present study, we addressed the issue in the context of a specific aortopathy,… More >

  • Open Access

    ARTICLE

    An ETD Method for American Options under the Heston Model

    Rafael Company1, Vera N. Egorova2, Lucas Jódar1,*, Ferran Fuster Valls3

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 493-508, 2020, DOI:10.32604/cmes.2020.010208

    Abstract A numerical method for American options pricing on assets under the Heston stochastic volatility model is developed. A preliminary transformation is applied to remove the mixed derivative term avoiding known numerical drawbacks and reducing computational costs. Free boundary is treated by the penalty method. Transformed nonlinear partial differential equation is solved numerically by using the method of lines. For full discretization the exponential time differencing method is used. Numerical analysis establishes the stability and positivity of the proposed method. The numerical convergence behaviour and effectiveness are investigated in extensive numerical experiments. More >

  • Open Access

    ARTICLE

    A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model

    Muhammad Shoaib Arif1,*, Ali Raza1,2, Kamaleldin Abodayeh3, Muhammad Rafiq4, Mairaj Bibi5, Amna Nazeer5

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 477-491, 2020, DOI:10.32604/cmes.2020.011121

    Abstract The essential features of the nonlinear stochastic models are positivity, dynamical consistency and boundedness. These features have a significant role in different fields of computational biology and many more. The aim of our paper, to achieve the comparison analysis of the stochastic susceptible, infected recovered epidemic model. The stochastic modelling is a realistic way to study the dynamics of compartmental modelling as compared to deterministic modelling. The effect of reproduction number has also observed in the stochastic susceptible, infected recovered epidemic model. For comparison analysis, we developed some explicit stochastic techniques, but they are the More >

Displaying 15661-15670 on page 1567 of 23336. Per Page