Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,225)
  • Open Access

    ARTICLE

    MASS TRANSFER MODELING OF HEPATIC DRUG ELIMINATION USING LOCAL VOLUME AVERAGING APPROACH

    Mohammad Izadifara,b,* , Jane Alcornc

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-7, 2012, DOI:10.5098/hmt.v3.3.3005

    Abstract Applying local volume averaging method a mathematical model including liver porosity, tortuosity, permeability, unbound drug fraction, drugplasma diffusivity, axial/radial dispersion and hepatocellular metabolism parameters was developed for hepatic drug elimination. The model was numerically solved using implicit finite difference method to describe drug concentration gradient with time across the liver. Statistically validated by observations and other models, the model suggested axial dispersion as a significant variable in drug distribution across the liver. Sensitivity analyses revealed that lower liver porosity resulted in faster drug distribution across the liver, and bioavailability was sensitive to the interaction between unbound fraction and intrinsic clearance. More >

  • Open Access

    ARTICLE

    VISCOUS DISSIPATION EFFECTS ON THE LIMITING VALUE OF NUSSELT NUMBERS FOR A SHEAR DRIVEN FLOW BETWEEN TWO ASYMMETRICALLY HEATED PARALLEL PLATES

    Pranab Kumar Mondal*, Sanchayan Mukherjee

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-6, 2012, DOI:10.5098/hmt.v3.3.3004

    Abstract The present paper deals with the analytical investigation for the limiting value of Nusselt number, including the effect of viscous dissipation on heat transfer for a laminar shear driven flow between two infinite parallel plates, where the bottom plate is fixed and the top plate is moving in an axial direction at a constant speed. The study concentrates on hydro-dynamically fully developed flow of a Newtonian fluid of constant properties without considering the axial conduction in the fluid. To investigate the effect of viscous dissipation on heat transfer by defining the limiting Nusselt number, plates are kept at constant equal… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF FILM COOLING WITH CHEMICAL HEAT SINK

    Keyong Chenga,b,*, Chunzi Zhangc, Wei Chena,b, Shiqiang Lianga,†, Yongxian Guoa,d, Xiulan Huaia

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-6, 2012, DOI:10.5098/hmt.v3.3.3003

    Abstract A film cooling method with chemical heat sink for gas turbine blades is proposed. In this method, an endothermic reaction of cooling stream occurs due to the heating from the mainstream, which leads to an improvement of film cooling effectiveness. The proposed method at different blowing ratios are computed and compared with the conventional one. The simulation result shows that due to the exsitence of the chemical heat sink the proposed method can enhance film cooling effectiveness not only in the streamwise direction, but also in the spanwise direction. More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF FLUID FLOW AND HEAT TRANSFER IN A MEMS-BASED MICRO CHANNEL HEAT SINK

    Md. Farhad Ismaila,*, M.A.I. Rashidb , M. Mahbubb

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-8, 2012, DOI:10.5098/hmt.v3.3.3002

    Abstract Carbon nanotube (CNT) has been proven to be an effective material for the thermal management of MEMS-based devices due to its superior thermal conductivity. At the same time, micro-channel heat-sinks are widely used in electronic products as a high performance heat transfer device because of its simple construction, easy fabrication process and effective heat removal capability. A numerical study has been carried out to investigate the thermal-fluid characteristics of the aligned and staggered MWCNT (multi walled CNT) based micro pin fins having 650 µm long with hydraulic diameter of ~130 µm. Average heat transfer coefficients have been obtained for effective… More >

  • Open Access

    ARTICLE

    DETAILED ANALYSIS OF AN ENDOREVERSIBLE FUEL CELL : MAXIMUM POWER AND OPTIMAL OPERATING TEMPERATURE DETERMINATION

    Alexandre Vaudreya,*, Philippe Baucourb, François Lanzettab, Raynal Glisesb

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-8, 2012, DOI:10.5098/hmt.v3.3.3001

    Abstract Producing electrical work in consuming chemical energy, the fuel cell (FC) is forced by the 2nd law to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time or through finite areas. As it was already done for various types of systems, including chemical engines, the fuel cell is here studied within the finite time thermodynamics framework. An endoreversible fuel cell is then defined, internally reversible but producing entropy during heat exchanges with its ambiance. Considering usual H2/O2 and H2/air chemical reactions… More >

  • Open Access

    ARTICLE

    CHEMICAL REACTION AND RADIATION EFFECTS ON NATURAL CONVECTION IN POROUS MEDIUM SATURATED WITH POWER-LAW FLUID

    D. Srinivasacharya, G. Swamy Reddy

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-9, 2012, DOI:10.5098/hmt.v3.4.3008

    Abstract The natural convection heat and mass transfer along a vertical plate embedded in non-Newtonian Power-law fluid saturated porous medium in the presence of first order chemical reaction and radiation is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The resulting equations are solved numerically using Shooting method. The effect of radiation parameters and chemical reaction parameter and power law index on non-dimensional velocity, temperature and concentration fields are discussed. The variation of different parameters on heat and mass transfer rates is presented in tabular form. More >

  • Open Access

    ARTICLE

    EXAMINATION OF THERMAL PROPERTIES OF CARBON-CARBON AND GRAPHATIZED CARBON-CARBON COMPOSITES

    Melanie Patricka, Messiha Saada,*

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-8, 2012, DOI:10.5098/hmt.v3.4.3007

    Abstract Thermal characterization is essential to the proper assignment of composites to specific applications. Specific heat, thermal diffusivity, and thermal conductivity are critical in the engineering design process and in the analysis of aerospace vehicles, space systems, power generation, transportation systems, and energy storage devices including fuel cells. This paper examines the thermal properties through the thickness of Carbon-Carbon and the impact of Graphitization is explored. Following ASTM standards, the Flash Method and Differential Scanning Calorimetry measured thermal diffusivity and specific heat respectively. These measurements and density data allowed for the computation of thermal conductivity. More >

  • Open Access

    ARTICLE

    SLIP EFFECTS ON BOUNDARY LAYER FLOW AND MASS TRANSFER WITH CHEMICAL REACTION OVER A PERMEABLE FLAT PLATE IN A POROUS MEDIUM

    Krishnendu Bhattacharyya*

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-6, 2012, DOI:10.5098/hmt.v3.4.3006

    Abstract A mathematical model is presented to analyse the steady boundary layer slip flow and mass transfer with nth order chemical reaction past a porous plate embedded in a Darcy porous medium. Velocity as well as mass slips are considered at the boundary. The governing PDEs are transformed into self-similar nonlinear ODEs by similarity transformations. The reduced nonlinear equations are solved numerically. The momentum boundary layer thickness is reduced for increase of permeability and suction parameters, whereas it increases with blowing parameter. The increase of velocity slip parameter reduces the momentum boundary layer thickness and also enhances the mass transfer from… More >

  • Open Access

    ARTICLE

    USING INCOMPLETE VARIABLE CROSS-SECTION HIGHLY CONDUCTIVE INSERTS FOR COOLING A DISC

    F. Sharifia , H. Ghaedaminib,*, M.R. Salimpoura

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-10, 2012, DOI:10.5098/hmt.v3.4.3005

    Abstract In the present study, conductive cooling of a disc is done by means of incomplete constant and variable cross-section highly conductive inserts embedded in radial and tributary configurations. Variational calculus is invoked to determine the optimum shape of the cross-sections of the inserts. Firstly, it is tried to derive an equation for thermal resistance of the disc for radial configuration of inserts based on the procedure used in constructal studies. This is done by implementing the optimized thermal resistances of elemental sectors. Then, the computed elemental sectors are put together so that they make branching configuration of inserts in the… More >

  • Open Access

    ARTICLE

    RADIO FREQUENCY HEATING OF IMPLANTED TISSUE ENGINEERED SCAFFOLDS: SIMULATION AND EXPERIMENTAL STUDIES

    Mohammad Izadifara,b,*, Xiongbiao Chena,b

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-7, 2012, DOI:10.5098/hmt.v3.4.3004

    Abstract Heat can be potentially used for accelerating biodegradation of implanted tissue engineered scaffolds. Cyclic and continuous radio frequency (RF) heating was applied to implanted chitosan and alginate scaffolds at 4 applied voltages, 3 frequencies, and 2 thermally conditioning environments. A 3D finite element model was developed to simulate the RF treatment. A uniform RF heating was achieved at the scaffold top. For alginate, voltage was the only significant RF heating factor while both frequency and voltage significantly affected RF heating of chitosan. Less temperature gradient across the scaffold was achieved at a conditioning environment at <30°C. Surrounding tissue was insignificantly… More >

Displaying 621-630 on page 63 of 22225. Per Page