Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,875)
  • Open Access

    ARTICLE

    MiR-520f-3p inhibits epithelial-mesenchymal transition of colorectal cancer cells by targeting Yes-associated protein 1

    LIJUN JIANG1, WENMIN JI1, YAJIE GONG2, JIAJUN LI2, JINCHUN LIU1,*

    BIOCELL, Vol., , DOI:10.32604/biocell.2023.029516

    Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies. Early diagnosis is the key to effective treatment of CRC. Since microRNAs (miRNAs) can be used as biomarkers of CRC, the objective of this work was to examine the effect of miR-520f-3p, which targets YAP1 (Yes-associated protein 1), on the ability of CRC cells to proliferate, invade, migrate, and undergo epithelial-mesenchymal transition (EMT). Methods: A miR-520f-3p mimic was used to overexpress miR-520f-3p in HT29 cells. To establish the tumor-bearing mouse model, transfected HT29 cells were subcutaneously implanted into BALB/c-nu nude mice, and YAP1 and miR-520f-3p levels were determined using… More >

  • Open Access

    ARTICLE

    CoS Nanosheets Coated with Dopamine-Derived Carbon Standing on Carbon Fiber Cloth as Binder-Free Anode for Li-ion Batteries

    Lianyuan Ji1, Mingchen Shi1, Zengkai Feng2, Hui Yang1,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.030599

    Abstract Cobalt sulphides attract much attention as anode materials for Li-ion batteries (LIBs). However, its poor conductivity, low initial column efficiency and large volume changes during cycling have hindered its further development. Herein, novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth (CFC) by two hydrothermal reactions followed with carbon coating via carbonizing dopamine (CoS NS@C/CFC). As a freestanding anode, the nanosheet structure of CoS not only accommodates the volume variation, but also provides a large interface area to proceed the charge transfer reaction. In addition, CFC works as both a three-dimensional skeleton and an active substance which can… More >

  • Open Access

    ARTICLE

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

    Jiapeng Wang1, Bo Zhang1,*, Haoqiang Cheng1, Zhixiang Xu2

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.030005

    Abstract A new method of pretreatment of corn straw with Phanerochaete chrysosporium combined with pyrolysis was proposed to improve the quality of bio-oil. The characterization results demonstrated that microbial pretreatment was an effective method to decrease the lignin, which can achieve a maximum removal rate of 44.19%. Due to the destruction of biomass structure, the content of alkali metal and alkaline earth metal is reduced. Meanwhile, the depolymerized biomass structure created better pyrolysis conditions to promote the pyrolysis efficiency, increase the average decomposition rate of pyrolysis and reduce the residue. In fast pyrolysis, because of the enrichment of cellulose and the… More >

  • Open Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.029888

    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before the critical temperature… More >

  • Open Access

    ARTICLE

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

    Zhengqing Ding, Quan Yang, Xinyan Yan, Feng Gu, Xujuan Huang*, Zhaosheng Cai*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.029424

    Abstract Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose (HEC) polymer surfactant (DA (EO)5GE-g-HEC) was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks. Dehydroabietyl polyethylene glycol glycidyl ether (DA(EO)5GE) was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether (Rosin derivative: DA(EO)5H) and epichlorohydrin. The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and con- firmed by EA. According to the formula, when m(HEC)/m(DA(EO)2GE) was 1:1~1:5, the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43% to 38.33%. The surface activity and foam properties of DA(EO)5GE-gHEC aqueous solution were studied. The results… More > Graphic Abstract

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

  • Open Access

    ARTICLE

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

    Xuefeng Song*, Minjuan Sun, Juan He, Lei Wang

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028885

    Abstract The adsorption method has the advantages of low cost, high efficiency, and environmental friendliness in treating fluorinated wastewater, and the adsorbent material is the key. This study combines the inherent anion-exchange adsorption properties of layered double hydroxides (LDHs). Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement (CAC) and flue gas desulfurization gypsum (FGDG) by chemical foaming technique. The mineral composition of the adsorbent material was characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Through the static adsorption experiment, the adsorption effect of the mineral composition… More >

  • Open Access

    ARTICLE

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

    Haodong Li1, Huiling Du1,*, Le Kang1, Yewen Zhang1, Tong Lu1, Yuchan Zhang1, Lan Yang2, Shijie Song2

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028877

    Abstract The large accumulation of coal gangue, a common industrial solid waste, causes severe environmental problems, and green development strategies are required to transform this waste into high-value-added products. In this study, low-cost ceramsites adsorbents were prepared from waste gangue, silt coal, and peanut shells and applied to remove the organic dye methylene blue from wastewater. We investigated the microstructure of ceramsites and the effects of the sintering atmosphere, sintering temperature, and solution pH on their adsorption performance. The ceramsites sintered at 800°C under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites; further, it exhibited… More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Strength and Ductility Performance of SteelTimber-Steel Joints with Screw and Steel-Tube Fasteners

    Huifeng Yang, Mingwang Wu, Rixin Gu, Hang Cao, Kai Xiao, Benkai Shi*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028507

    Abstract This article presents experimental results of steel-timber-steel (STS) joints loaded parallel to grain. Eight groups of specimens were designed, and tensile tests were performed. The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints. The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners. The experimental results were discussed in terms of yielding and ultimate strengths, slip stiffness, and ductility factors. The ductility classification and failure mechanisms of each group of specimens were analyzed. It was demonstrated that the STS joint… More >

  • Open Access

    ARTICLE

    Preparation of High Activity Admixture from Steel Slag, Phosphate Slag and Limestone Powder

    Ying Ji*, Xi Liu*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028439

    Abstract The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved. In this paper, a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability, combining the characteristics of each solid waste. The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency, setting time, workability, and mechanical properties, combined with the composition of the phases, hydration temperature, and microscopic morphology. The results showed that the steel slag:phosphate… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

    Guiwu Lin, Kaige Liu, Yuliang Chen*, Yunpeng Ji, Rui Jiang

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028290

    Abstract This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete. A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test. The failure modes, stress-strain whole curves, peak stress, peak strain, and energy dissipation capacity were systematically observed and revealed. Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete, corresponding to the enhancement of 81.75% and 22.90% on average. The addition of polyvinyl alcohol fiber can effectively improve the… More >

Displaying 1271-1280 on page 128 of 2875. Per Page