Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,212)
  • Open Access

    ABSTRACT

    Development of the coarse-grained particle method and its application to compression-wave propagation in metal

    Takahide Nakamura

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 115-116, 2011, DOI:10.3970/icces.2011.019.115

    Abstract No limitation exists virtually in target size for the classical simulation of atoms with the O(N) algorithms on parallel machines. On the other hand, the time step cannot be changed and hence the total simulation time still remains short. It is meaningful to increase the time step by the coarse-graining the atomic system. The coarse-grained particle (CGP) method has been proposed for such purposes, but it is applicable only to crystalline solids at zero-temperature limit [1,2]. The total energy of the CGP system is defined as the statistical ensemble average of the atomistic Hamiltonian under some certain constraint. For analytic… More >

  • Open Access

    ABSTRACT

    Discrete Lattice Modeling of Atomistic Locations in the Interfaces Between Nanomaterials

    V.K. Tewary

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 113-114, 2011, DOI:10.3970/icces.2011.019.113

    Abstract Interfacial region between two nanomaterials can be treated as a separate material since its atomistic structure and characteristics are different than the two materials on its either side. The mechanical as well as electronic properties of composite materials are sensitive to the interfaces. For industrial application of the nanomaterial systems, it is vital to model and measure the discrete atomistic locations in the interface during operating conditions. As the dimensions of nanomaterial systems shrink, the role of interfaces become increasingly important. Because of its nanothickness, the conventional characterization and design parameters like elastic constants, stress and strains are not reliable… More >

  • Open Access

    ABSTRACT

    A Hybrid Finite Element Method for Gradient Elasticity

    N.A. Dumont, D. Huaman

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 111-112, 2011, DOI:10.3970/icces.2011.019.111

    Abstract This paper proposes a hybrid finite element formulation of the strain gradient elasticity that provides a natural conceptual framework to properly deal with the interelement compatibility of normal displacement gradients and the equilibrium of non-classical boundary forces. It is based on developments firstly proposed by Mindlin and further elaborated by Aifantis. Consistency is assessed - in the full manuscript version - by means of several generalized patch tests. More >

  • Open Access

    ABSTRACT

    Assessment of Some Atomization Models Used in Spray Calculations

    M.S. Raju & Dan Bulzan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 109-110, 2011, DOI:10.3970/icces.2011.019.109

    Abstract The paper presents the results from a validation study undertaken as a part of the NASA's fundamental aeronautics initiative on high altitude emissions in order to assess the accuracy of several atomization models used in both sub-cooled and superheat spray calculations. As a part of this investigation we have undertaken the validation based on four different cases to investigate the spray charactereristics of (1) a ashing jet generated by the sudden release of pressurized R134A from cylindrical nozzle, (2) a liquid jet atomizing in a subsonic cross ow, (3) a Parker-Hannin pressure swirl atomizer, and (4) a single-element LDI (Lean… More >

  • Open Access

    ABSTRACT

    Uni-axial 3-D shape measurement by liquid crystal digital shifter

    Yukitoshi OTANI, Fumio KOBAYASHI, Yasuhiro MIZUTANI, Manabu Harada, Toru YOSHIZAWA

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 107-108, 2011, DOI:10.3970/icces.2011.019.107

    Abstract A uni-axial three dimensional surface measurement by a liquid crystal digital shifter( LCDC) is proposed using a telecentric optical system. Distance information can be determined by measuring the contrast in the projected grating pattern. The magnification of the object image captured by a CCD camera is adjusted constant by changing the focus distance. A shadow less measurement of the object's area is archived by using a uni-axial system. The liquid crystal digital shifter is a powerful tool to make arbitrary intensity and frequency distribution. Surface profiles of some mechanical parts were measured to demonstrate this method. More >

  • Open Access

    ABSTRACT

    Lattice Boltzmann Simulation of Dynamic Behavior of Liquid Droplets on Solid Surfaces

    Masato Yoshino, Yoshito Tanaka, Keisuke Yano

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 131-132, 2011, DOI:10.3970/icces.2011.018.131

    Abstract Dynamics of droplet impact on solid surfaces is of great importance in many engineering applications such as ink-jet printing and rapid spray cooling of hot surfaces. In this study, the lattice kinetic scheme based on the lattice Boltzmann method for immiscible two-phase fluids [Inamuro (2006)] is applied to such micro-fluid problems. The present method enables us to perform stable calculations of two-phase flows with large density ratios of up to 1000. The boundary condition based on the wetting potential that is calculated according to a prescribed static contact angle is used on solid surfaces [Briant, Papatzacos, and Yeomans (2002)]. First,… More >

  • Open Access

    ABSTRACT

    Large deflection analysis for thin-plate bending problem using HRK approximation

    Shota Sadamoto, Satoyuki Tanaka, Shigenobu Okazawa

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 129-130, 2011, DOI:10.3970/icces.2011.018.129

    Abstract In this presentation, large deflection analysis for thin-plate bending problem using Hermite Reproducing Kernel (HRK) approximation is presented. HRK approximation for thin-plate bending problem is one of meshfree/particle approaches and is proposed by Wang [1]. The deflection and rotations are represented by the Hermite-type approximation. In the formulation, the rotations are represented by the differentiation of deflection and the approximation is satisfied Kirchhoff Mode Reproducing Condition (KMRC). Sub-domain stabilized nodal conforming integration is adopted to enforce integration constraint in the numerical integration. Total Lagrangian method is adopted to solve thin-plate bending problem with geometrical non-linearity. Green-Lagrange strain and second Piola… More >

  • Open Access

    ABSTRACT

    Multi-Physics Simulation by Quantum Chemical Molecular Dynamics

    Momoji Kubo

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 127-128, 2011, DOI:10.3970/icces.2011.018.127

    Abstract The establishment of the process and material design technology based on theoretical science at electronic- and atomic-level is one of the important subjects in order to solve the energy and environmental problems, to realize the safe and secure society, and to create new industry and markets. Especially, the recent material, process, and system technologies constitute of multi-physics phenomena including chemical reaction, friction, impact, stress, fluid, photon, electron, heat, electric and magnetic fields etc., and then the deep understanding of the above multi-physics phenomena are essential. Previously, continuum simulations such as finite element method have been employed for the investigation on… More >

  • Open Access

    ABSTRACT

    Surface Piezoelectricity and Surface Wave Propagation in a Piezoelectric Half-space with Surface Effect

    Weiqiu CHEN

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 125-126, 2011, DOI:10.3970/icces.2011.018.125

    Abstract We will report a theory of surface piezoelectricity which governs a plane surface of a piezoelectric body. The piezoelectric surface may be endowed with different properties from the bulk material, and can account for the well-known surface effect which becomes increasingly important in micro- or nano-sized structures. In this study, the surface is treated as a piezoelectric thin layer of thickness h, and the state-space formulism is adopted to obtain the transfer relation between the state vectors at the top and bottom surfaces of the layer. The power series of the transfer matrix is then used, which can be truncated… More >

  • Open Access

    ABSTRACT

    Mechanical models for human tracheas based on uniaxial extension test

    xuan pei

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 123-124, 2011, DOI:10.3970/icces.2011.018.123

    Abstract The constitutive model always plays a fundamental role in biomechanical researches on human trachea soft tissues. Due to the variety of constitutive theories, the selection of the appropriate one and the determination of its material parameters becomes a question. Based on longitudinal and circumferential extension tests on human tracheas, three constitutive models-the isotropic M-R model, the Holzapfel's anisotropic model and modified Hozapfel's model respectively, were utilized in this paper to fit the experimental data. A jointly fitting strategy was also proposed to obtain the anisotropic model parameters. For the isotropic M-R model, material parameters optimized from different directions are significantly… More >

Displaying 17481-17490 on page 1749 of 22212. Per Page