Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,808)
  • Open Access

    ARTICLE

    Experimental Investigation on the Strength and Ductility Performance of SteelTimber-Steel Joints with Screw and Steel-Tube Fasteners

    Huifeng Yang, Mingwang Wu, Rixin Gu, Hang Cao, Kai Xiao, Benkai Shi*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028507

    Abstract This article presents experimental results of steel-timber-steel (STS) joints loaded parallel to grain. Eight groups of specimens were designed, and tensile tests were performed. The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints. The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners. The experimental results were discussed in terms of yielding and ultimate strengths, slip stiffness, and ductility factors. The ductility classification and failure mechanisms of each group of specimens were analyzed. It was demonstrated that the STS joint… More >

  • Open Access

    ARTICLE

    Preparation of High Activity Admixture from Steel Slag, Phosphate Slag and Limestone Powder

    Ying Ji*, Xi Liu*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028439

    Abstract The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved. In this paper, a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability, combining the characteristics of each solid waste. The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency, setting time, workability, and mechanical properties, combined with the composition of the phases, hydration temperature, and microscopic morphology. The results showed that the steel slag:phosphate… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

    Guiwu Lin, Kaige Liu, Yuliang Chen*, Yunpeng Ji, Rui Jiang

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.028290

    Abstract This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete. A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test. The failure modes, stress-strain whole curves, peak stress, peak strain, and energy dissipation capacity were systematically observed and revealed. Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete, corresponding to the enhancement of 81.75% and 22.90% on average. The addition of polyvinyl alcohol fiber can effectively improve the… More >

  • Open Access

    ARTICLE

    Effect of Nanomaterials Addition to Phase Change Materials on Heat Transfer in Solar Panels under Iraqi Atmospheric Conditions

    Majid Ahmed Mohammed1, Abdullah Talab Derea2, Mohammed Yaseen Lafta3, Obed Majeed Ali1, Omar Rafae Alomar4,*

    Frontiers in Heat and Mass Transfer, Vol., , DOI:10.32604/fhmt.2023.041668

    Abstract It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others. These characteristics include a large capacity for absorbing heat and a large capacity for releasing heat when the phase changes; however, these materials have a low thermal conductivity. This paper presents the results of an experimental study that investigated the impact that nanoparticles of copper oxide had on reducing the temperature of solar panels. The phase change substance that was used was determined to be beeswax. The impact of adding… More >

  • Open Access

    ARTICLE

    Combining Deep Learning with Knowledge Graph for Design Knowledge Acquisition in Conceptual Product Design

    Yuexin Huang1,2, Suihuai Yu1, Jianjie Chu1,*, Zhaojing Su1,3, Yangfan Cong1, Hanyu Wang1, Hao Fan4

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.028268

    Abstract The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design. This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph. Specifically, the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data, and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design. Moreover, the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module, and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity… More >

  • Open Access

    ARTICLE

    Threshold-Based Software-Defined Networking (SDN) Solution for Healthcare Systems against Intrusion Attacks

    Laila M. Halman, Mohammed J. F. Alenazi*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.028077

    Abstract The healthcare sector holds valuable and sensitive data. The amount of this data and the need to handle, exchange, and protect it, has been increasing at a fast pace. Due to their nature, software-defined networks (SDNs) are widely used in healthcare systems, as they ensure effective resource utilization, safety, great network management, and monitoring. In this sector, due to the value of the data, SDNs face a major challenge posed by a wide range of attacks, such as distributed denial of service (DDoS) and probe attacks. These attacks reduce network performance, causing the degradation of different key performance indicators (KPIs)… More >

  • Open Access

    ARTICLE

    Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump

    Jingxiao Han1, Chuanzhao Zhang2, Lu Wang3,*, Zengjun Chang1, Qing Zhao1, Ying Shi4, Jiarui Wu5, Xiangfei Kong3

    Energy Engineering, Vol., , DOI:10.32604/ee.2023.029749

    Abstract For heating systems based on electricity storage coupled with solar energy and an air source heat pump (ECSA), choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency. In this paper, four cities in three climatic regions in China were selected, namely Nanjing in the hot summer and cold winter region, Tianjin in the cold region, Shenyang and Harbin in the severe cold winter region. The levelized cost of heat (LCOH) was used as the economic evaluation index, and the energy consumption and emissions of different pollutants were analyzed. TRNSYS software was… More >

  • Open Access

    REVIEW

    Molecular Mechanism Underlying Plant Response to Cold Stress

    Yiwei Cao, Delight Hwarari, Yasmina Radani, Yuanlin Guan, Liming Yang*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.024929

    Abstract Low temperature stress is one of the most important factors limiting plant growth and geographical distribution. In order to adapt to low temperature, plants have evolved strategies to acquire cold tolerance, known as, cold acclimation. Current molecular and genomic studies have reported that annual herbaceous and perennial woody plants share similar cold acclimation mechanisms. However, woody perennials also require extra resilience to survive cold winters. Thus, trees have acquired complex dynamic processes to control the development of dormancy and cold resistance, ensuring successful tolerance during the coldest winter season. In this review, we systemically described how woody plants perceive and… More >

  • Open Access

    ARTICLE

    Investigation the Influence of Phase Change Material Amount on a Hot-Water Stratification in Charging Mode

    Abeer H. Falih*, Basim Freegah, Adnan A. Abdulrasool

    Frontiers in Heat and Mass Transfer, Vol., , DOI:10.32604/fhmt.2023.01525

    Abstract Among the various techniques for enhancing the storage and consumption of energy in a thermal energy storage system, the establishment of thermal stratification in a hot-water container is an effective technology. The current study aims to assess the performance of the thermal stratification for hot-water containers using (ANSYS Fluent) R.1.0, 2022, through the study of the impact of different numbers of paraffin-filled containers, namely 3, 5, and 7, that are equivalent to 5, 7, and 9 kg of paraffin, respectively. To validate the present numerical model, a comparison between the current study results and the experimental findings from the literature… More >

  • Open Access

    ARTICLE

    A Stable Fuzzy-Based Computational Model and Control for Inductions Motors

    Yongqiu Liu1, Shaohui Zhong2,*, Nasreen Kausar3, Chunwei Zhang4,*, Ardashir Mohammadzadeh4, Dragan Pamucar5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.028175

    Abstract In this paper, a stable and adaptive sliding mode control (SMC) method for induction motors is introduced. Determining the parameters of this system has been one of the existing challenges. To solve this challenge, a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism. According to the dynamic changes of the system, in addition to the parameters of the SMC, the parameters of the type-2 fuzzy neural network are also updated online. The conditions for guaranteeing the convergence and stability of the control system are provided. In the simulation part, in order… More >

Displaying 1211-1220 on page 122 of 2808. Per Page