Vol.130, No.2, 2022, pp.823-839, doi:10.32604/cmes.2022.017030
OPEN ACCESS
ARTICLE
ResNet50-Based Effective Model for Breast Cancer Classification Using Histopathology Images
  • Nishant Behar*, Manish Shrivastava
Department of Computer Science & Engineering, GGV, Bilaspur, 495009, India
* Corresponding Author: Nishant Behar. Email:
(This article belongs to this Special Issue: Mathematical Aspects of Computational Biology and Bioinformatics)
Received 26 April 2021; Accepted 11 August 2021; Issue published 13 December 2021
Abstract
Breast cancer is considered an immense threat and one of the leading causes of mortality in females. It is curable only when detected at an early stage. A standard cancer diagnosis approach involves detection of cancer-related anomalies in tumour histopathology images. Detection depends on the accurate identification of the landmarks in the visual artefacts present in the slide images. Researchers are continuously striving to develop automatic machine-learning algorithms for processing medical images to assist in tumour detection. Nowadays, computer-based automated systems play an important role in cancer image analysis and help healthcare experts make rapid and correct inferences about the type of cancer. This study proposes an effective convolutional neural network-based (CNN-based) model that exploits the transfer-learning technique for automatic image classification between malignant and benign tumour, using histopathology images. Resnet50 architecture has been trained on new dataset for feature extraction, and fully connected layers have been fine-tuned for achieving highest training, validation and test accuracies. The result illustrated state-of-the-art performance of the proposed model with highest training, validation and test accuracies as 99.70%, 99.24% and 99.24%, respectively. Classification accuracy is increased by 0.66% and 0.2% when compared with similar recent studies on training and test data results. Average precision and F1 score have also improved, and receiver operating characteristic (RoC) area has been achieved to 99.1%. Thus, a reliable, accurate and consistent CNN model based on pre-built Resnet50 architecture has been developed.
Keywords
Classification; histopathology images; convolutional neural network; breast cancer; breakHis
Cite This Article
Behar, N., Shrivastava, M. (2022). ResNet50-Based Effective Model for Breast Cancer Classification Using Histopathology Images. CMES-Computer Modeling in Engineering & Sciences, 130(2), 823–839.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.