Open Access iconOpen Access



Melatonin Promotes Rice Seed Germination under Drought Stress by Regulating Antioxidant Capacity

Luqian Zhang1,#, Xilin Fang1,#, Nan Yu1, Jun Chen1, Haodong Wang1, Quansheng Shen1, Guanghui Chen2,*, Yue Wang1,*

1 College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
2 The Key Laboratory of Crop Germplasm Innovation and Resource Utilization of Hunan Province, Hunan Agricultural University, Changsha, 410128, China

* Corresponding Authors: Guanghui Chen. Email: email; Yue Wang. Email: email

(This article belongs to this Special Issue: Abiotic and Biotic Stress Tolerance in Crop)

Phyton-International Journal of Experimental Botany 2023, 92(5), 1571-1587.


Drought stress is a serious threat to the germination of plant seeds and the growth of seedlings. Melatonin has been proven to play an important role in alleviating plant stress. However, its effect on seed germination under drought conditions is still poorly understood. Therefore, we studied the effects of melatonin on rice seed germination and physiological characteristics under drought stress. Rice seeds were treated with different concentrations of melatonin (i.e., 0, 20, 100, and 500 μM) and drought stress was simulated with 5% polyethylene glycol 6000 (PEG6000). The results showed that 100 μM melatonin can effectively improve the germination potential, rate and index; the vigor index of rice seeds; and the length of the shoot and root. In addition, that treatment also increased the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and reduced the content of malondialdehyde (MDA). The grey relational grade between the shoot MDA content and the melatonin seed-soaking treatment was the highest, which could be useful for evaluating the effect of melatonin on drought tolerance. Two-way analysis of variance showed that the effect of single melatonin treatment on rice seeds was more significant than that of single drought stress and interaction treatment of drought and melatonin (p < 0.05). The subordinate function results showed that 100 μM melatonin significantly improved the germination and physiological indexes of rice seeds and effectively alleviated the adverse effects of drought stress on rice seedlings. The results helped to improve the understanding of the morphological and physiological involvement of melatonin in promoting seed germination and seedling development under drought stress.


Supplementary Material

Supplementary Material File

Cite This Article

Zhang, L., Fang, X., Yu, N., Chen, J., Wang, H. et al. (2023). Melatonin Promotes Rice Seed Germination under Drought Stress by Regulating Antioxidant Capacity. Phyton-International Journal of Experimental Botany, 92(5), 1571–1587.

cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 823


  • 461


  • 0


Share Link