Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Investigating Techniques to Optimise the Layout of Turbines in a Windfarm Using a Quantum Computer

    James Hancock*, Matthew Craven, Craig McNeile, Davide Vadacchino

    Journal of Quantum Computing, Vol.7, pp. 55-79, 2025, DOI:10.32604/jqc.2025.068127 - 11 August 2025

    Abstract This paper investigates Windfarm Layout Optimization (WFLO), where we formulate turbine placement considering wake effects as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Wind energy plays a critical role in the transition toward sustainable power systems, but the optimal placement of turbines remains a challenging combinatorial problem due to complex wake interactions. With recent advances in quantum computing, there is growing interest in exploring whether hybrid quantum-classical methods can provide advantages for such computationally intensive tasks. We investigate solving the resulting QUBO problem using the Variational Quantum Eigensolver (VQE) implemented on Qiskit’s quantum computer simulator, More >

  • Open Access

    ARTICLE

    Comparative Study of CPLEX and D-Wave for Track Finding Resolution

    Duy Dao1, Hervé Kerivin2, Philippe Lacomme2,*, Bogdan Vulpescu3

    Journal of Quantum Computing, Vol.7, pp. 39-54, 2025, DOI:10.32604/jqc.2025.064764 - 30 May 2025

    Abstract Track finding is a complex optimization problem, originally introduced in particle physics for the reconstruction of the trajectories of particles. A track is typically composed of several consecutive segments, which together form a smooth curve without any bifurcations. In this paper, we investigate various modeling approaches to assess their effectiveness and impact when applied to track finding, using both quantum and classical methods. We present implementations of three classical models using CPLEX, two quantum models on actual D-Wave quantum computers, and one quantum model on a D-Wave simulator. The results show that, while CPLEX provides… More >

  • Open Access

    ARTICLE

    Analysis of Innovative Quantum Optimization Solutions for Shor’s Period Finding Algorithm Applied to the Computation of

    Kaleb Dias Antoine KODO1,*, Eugène C. EZIN1,2

    Journal of Quantum Computing, Vol.7, pp. 17-38, 2025, DOI:10.32604/jqc.2025.059089 - 08 April 2025

    Abstract In the rapidly evolving domain of quantum computing, Shor’s algorithm has emerged as a groundbreaking innovation with far-reaching implications for the field of cryptographic security. However, the efficacy of Shor’s algorithm hinges on the critical step of determining the period, a process that poses a substantial computational challenge. This article explores innovative quantum optimization solutions that aim to enhance the efficiency of Shor’s period finding algorithm. The article focuses on quantum development environments, such as Qiskit and Cirq. A detailed analysis is conducted on three notable tools: Qiskit Transpiler, BQSKit, and Mitiq. The performance of More >

  • Open Access

    ARTICLE

    A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution

    Oliver Crampton1,*, Panagiotis Promponas1,2, Richard Chen1, Paul Polakos1, Leandros Tassiulas2, Louis Samuel1

    Journal of Quantum Computing, Vol.7, pp. 1-15, 2025, DOI:10.32604/jqc.2025.061275 - 21 March 2025

    Abstract Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation by interconnecting multiple quantum processor units (QPUs). A key challenge in this domain is efficiently allocating logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard. Traditional approaches, primarily focused on graph partitioning strategies, have sought to reduce the number of required Bell pairs for executing non-local CNOT operations, a form of gate teleportation. However, these methods have limitations in terms of efficiency and scalability. Addressing this, our work jointly considers gate and qubit teleportations introducing… More >

  • Open Access

    ARTICLE

    Advancing Quantum Technology: Insights Form Mach-Zehnder Interferometer in Quantum State Behaviour and Error Correction

    Priyanka1, Damodarakurup Sajeev2, Shaik Ahmed3, Shankar Pidishety3, Ram Soorat3,*

    Journal of Quantum Computing, Vol.6, pp. 53-66, 2024, DOI:10.32604/jqc.2024.054000 - 14 November 2024

    Abstract The present study delves into the application of investigating quantum state behaviour, particularly focusing on coherent and superposition states. These states, characterized by their remarkable stability and precision, have found extensive utility in various domains of quantum mechanics and quantum information processing. Coherent states are valuable for manipulating quantum systems with accuracy. Superposition states allow quantum systems to exist in numerous configurations at the same time, which paves the way for quantum computing’s capacity for parallel processing. The research accentuates the crucial role of quantum error correction (QEC) in ensuring the stability and reliability of… More >

  • Open Access

    ARTICLE

    IQAOA for Two Routing Problems: A Methodological Contribution with Application to TSP and VRP

    Eric Bourreau1, Gérard Fleury2, Philippe Lacomme2,*

    Journal of Quantum Computing, Vol.6, pp. 25-51, 2024, DOI:10.32604/jqc.2024.048792 - 25 October 2024

    Abstract The paper presents a novel quantum method for addressing two fundamental routing problems: the Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP), both central to routing challenges. The proposed method, named the Indirect Quantum Approximate Optimization Algorithm (IQAOA), leverages an indirect solution representation using ranking. Our contribution focuses on two main areas: 1) the indirect representation of solutions, and 2) the integration of this representation into an extended version of QAOA, called IQAOA. This approach offers an alternative to QAOA and includes the following components: 1) a quantum parameterized circuit designed to simulate… More >

  • Open Access

    ARTICLE

    Optimized General Uniform Quantum State Preparation

    Mark Ariel Levin*

    Journal of Quantum Computing, Vol.6, pp. 15-24, 2024, DOI:10.32604/jqc.2024.047423 - 24 April 2024

    Abstract Quantum algorithms for unstructured search problems rely on the preparation of a uniform superposition, traditionally achieved through Hadamard gates. However, this incidentally creates an auxiliary search space consisting of nonsensical answers that do not belong in the search space and reduce the efficiency of the algorithm due to the need to neglect, un-compute, or destructively interfere with them. Previous approaches to removing this auxiliary search space yielded large circuit depth and required the use of ancillary qubits. We have developed an optimized general solver for a circuit that prepares a uniform superposition of any N More >

  • Open Access

    ARTICLE

    3-Qubit Circular Quantum Convolution Computation Using the Fourier Transform with Illustrative Examples

    Artyom M. Grigoryan1,*, Sos S. Agaian2

    Journal of Quantum Computing, Vol.6, pp. 1-14, 2024, DOI:10.32604/jqc.2023.026981 - 30 January 2024

    Abstract In this work, we describe a method of calculation of the 1-D circular quantum convolution of signals represented by 3-qubit superpositions in the computational basis states. The examples of the ideal low pass and high pass filters are described and quantum schemes for the 3-qubit circular convolution are presented. In the proposed method, the 3-qubit Fourier transform is used and one addition qubit, to prepare the quantum superposition for the inverse quantum Fourier transform. It is considered that the discrete Fourier transform of one of the signals is known and calculated in advance and only More >

  • Open Access

    ARTICLE

    A Protocol for Conversion of Path-Spin to Spin-Spin Quantum Entanglement

    Indranil Bayal1, Pradipta Panchadhyayee1,2,*

    Journal of Quantum Computing, Vol.5, pp. 71-79, 2023, DOI:10.32604/jqc.2023.045164 - 14 December 2023

    Abstract The present model deals with a protocol which involves the generation and conversion of entanglement from path-spin (P-S) hybrid entanglement associated with half-spin particle to spin-spin (S-S) interparticle entanglement. This protocol finds its applications in quantum information processing via a series of operations which include a beam splitter, spin flipper, spin measurement, classical channel, unitary transformations. Finally, it leads to two particles having completely entangled spin variables, without any requirement of any simultaneous operation on the two particles. More >

  • Open Access

    ARTICLE

    Comparison among Classical, Probabilistic and Quantum Algorithms for Hamiltonian Cycle Problem

    Giuseppe Corrente1,2,*, Carlo Vincenzo Stanzione3,4, Vittoria Stanzione5

    Journal of Quantum Computing, Vol.5, pp. 55-70, 2023, DOI:10.32604/jqc.2023.044786 - 14 December 2023

    Abstract The Hamiltonian cycle problem (HCP), which is an NP-complete problem, consists of having a graph G with nodes and m edges and finding the path that connects each node exactly once. In this paper we compare some algorithms to solve a Hamiltonian cycle problem, using different models of computations and especially the probabilistic and quantum ones. Starting from the classical probabilistic approach of random walks, we take a step to the quantum direction by involving an ad hoc designed Quantum Turing Machine (QTM), which can be a useful conceptual project tool for quantum algorithms. Introducing several More >

Displaying 1-10 on page 1 of 72. Per Page