Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,494)
  • Open Access

    ARTICLE

    Bivariate Beta–Inverse Weibull Distribution: Theory and Applications

    Ali Algarni, Muhammad Qaiser Shahbaz*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 83-100, 2021, DOI:10.32604/csse.2021.014342 - 23 December 2020

    Abstract Probability distributions have been in use for modeling of random phenomenon in various areas of life. Generalization of probability distributions has been the area of interest of several authors in the recent years. Several situations arise where joint modeling of two random phenomenon is required. In such cases the bivariate distributions are needed. Development of the bivariate distributions necessitates certain conditions, in a field where few work has been performed. This paper deals with a bivariate beta-inverse Weibull distribution. The marginal and conditional distributions from the proposed distribution have been obtained. Expansions for the joint More >

  • Open Access

    ARTICLE

    Impact of Distance Measures on the Performance of AIS Data Clustering

    Marta Mieczyńska1,*, Ireneusz Czarnowski2

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 69-82, 2021, DOI:10.32604/csse.2021.014327 - 23 December 2020

    Abstract Automatic Identification System (AIS) data stream analysis is based on the AIS data of different vessel’s behaviours, including the vessels’ routes. When the AIS data consists of outliers, noises, or are incomplete, then the analysis of the vessel’s behaviours is not possible or is limited. When the data consists of outliers, it is not possible to automatically assign the AIS data to a particular vessel. In this paper, a clustering method is proposed to support the AIS data analysis, to qualify noises and outliers with respect to their suitability, and finally to aid the reconstruction… More >

  • Open Access

    ARTICLE

    Hybrid Cloud Architecture for Higher Education System

    Omar Nooh Almotiry1, Mohemmed Sha2,*, Mohamudha Parveen Rahamathulla3, Omer Salih Dawood Omer2

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 1-12, 2021, DOI:10.32604/csse.2021.014267 - 23 December 2020

    Abstract As technology improves, several modernization efforts are taken in the process of teaching and learning. An effective education system should maintain global connectivity, federate security and deliver self-access to its services. The cloud computing services transform the current education system to an advanced one. There exist several tools and services to make teaching and learning more interesting. In the higher education system, the data flow and basic operations are almost the same. These systems need to access cloud-based applications and services for their operational advancement and flexibility. Architecting a suitable cloud-based education system will leverage… More >

  • Open Access

    ARTICLE

    Fast Sentiment Analysis Algorithm Based on Double Model Fusion

    Zhixing Lin1,2, Like Wang3,4, Xiaoli Cui5, Yongxiang Gu3,4,*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 175-188, 2021, DOI:10.32604/csse.2021.014260 - 23 December 2020

    Abstract Nowadays, as the number of textual data is exponentially increasing, sentiment analysis has become one of the most significant tasks in natural language processing (NLP) with increasing attention. Traditional Chinese sentiment analysis algorithms cannot make full use of the order information in context and are inefficient in sentiment inference. In this paper, we systematically reviewed the classic and representative works in sentiment analysis and proposed a simple but efficient optimization. First of all, FastText was trained to get the basic classification model, which can generate pre-trained word vectors as a by-product. Secondly, Bidirectional Long Short-Term More >

  • Open Access

    ARTICLE

    Design and Implementation of Museum Educational Content Based on Mobile Augmented Reality

    Jin Qian1,2, Juan Cheng1,2,*, Yixing Zeng1, Tjondronegoro Dian W.3

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 157-173, 2021, DOI:10.32604/csse.2021.014258 - 23 December 2020

    Abstract In the digital age, museums are becoming increasingly integrated with media technology. The interactive mode of museum education brought about by new digital communication technology can increase the audience’s participation and interest in museum education content. This paper attempts to use Mobile Augment Reality (MAR) technology to design museum education content under the guidance of the principle of abstraction hierarchy from the theory of education optimization. With the help of MAR technology, museum education content can move up and down at different levels of information abstraction. The purpose is to help the audience move between More >

  • Open Access

    ARTICLE

    Three-Dimensional Measurement Using Structured Light Based on Deep Learning

    Tao Zhang1,*, Jinxing Niu1, Shuo Liu1, Taotao Pan1, Brij B. Gupta2,3

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 271-280, 2021, DOI:10.32604/csse.2021.014181 - 23 December 2020

    Abstract Three-dimensional (3D) reconstruction using structured light projection has the characteristics of non-contact, high precision, easy operation, and strong real-time performance. However, for actual measurement, projection modulated images are disturbed by electronic noise or other interference, which reduces the precision of the measurement system. To solve this problem, a 3D measurement algorithm of structured light based on deep learning is proposed. The end-to-end multi-convolution neural network model is designed to separately extract the coarse- and fine-layer features of a 3D image. The point-cloud model is obtained by nonlinear regression. The weighting coefficient loss function is introduced More >

  • Open Access

    ARTICLE

    The Measurement of the Software Ecosystem’s Productivity with GitHub

    Zhifang Liao1, Yiqi Zhao1, Shengzong Liu2, Yan Zhang3, Limin Liu1,*, Jun Long1

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 239-258, 2021, DOI:10.32604/csse.2021.014144 - 23 December 2020

    Abstract Software productivity has always been one of the most critical metrics for measuring software development. However, with the open-source community (e.g., GitHub), new software development models are emerging. The traditional productivity metrics do not provide a comprehensive measure of the new software development models. Therefore, it is necessary to build a productivity measurement model of open source software ecosystem suitable for the open-source community’s production activities. Based on the natural ecosystem, this paper proposes concepts related to the productivity of open source software ecosystems, analyses influencing factors of open source software ecosystem productivity, and constructs More >

  • Open Access

    ARTICLE

    PRNU Extraction from Stabilized Video: A Patch Maybe Better than a Bunch

    Bin Ma1, Yuanyuan Hu1, Jian Li1,*, Chunpeng Wang1, Meihong Yang2, Yang Zheng3

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 189-200, 2021, DOI:10.32604/csse.2021.014138 - 23 December 2020

    Abstract This paper presents an algorithm to solve the problem of Photo-Response Non-Uniformity (PRNU) noise facing stabilized video. The stabilized video undergoes in-camera processing like rolling shutter correction. Thus, misalignment exists between the PRNU noises in the adjacent frames owing to the global and local frame registration performed by the in-camera processing. The misalignment makes the reference PRNU noise and the test PRNU noise unable to extract and match accurately. We design a computing method of maximum likelihood estimation algorithm for extracting the PRNU noise from stabilized video frames. Besides, unlike most prior arts tending to… More >

  • Open Access

    ARTICLE

    Effective Latent Representation for Prediction of Remaining Useful Life

    Qihang Wang, Gang Wu*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 225-237, 2021, DOI:10.32604/csse.2021.014100 - 23 December 2020

    Abstract AI approaches have been introduced to predict the remaining useful life (RUL) of a machine in modern industrial areas. To apply them well, challenges regarding the high dimension of the data space and noisy data should be met to improve model efficiency and accuracy. In this study, we propose an end-to-end model, termed ACB, for RUL predictions; it combines an autoencoder, convolutional neural network (CNN), and bidirectional long short-term memory. A new penalized root mean square error loss function is included to avoid an overestimation of the RUL. With the CNN-based autoencoder, a high-dimensional data More >

  • Open Access

    ARTICLE

    Fuzzy Adaptive Filtering-Based Energy Management for Hybrid Energy Storage System

    Xizheng Zhang1,2,*, Zhangyu Lu1, Chongzhuo Tan1, Zeyu Wang1

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 117-130, 2021, DOI:10.32604/csse.2021.014081 - 23 December 2020

    Abstract Regarding the problem of the short driving distance of pure electric vehicles, a battery, super-capacitor, and DC/DC converter are combined to form a hybrid energy storage system (HESS). A fuzzy adaptive filtering-based energy management strategy (FAFBEMS) is proposed to allocate the required power of the vehicle. Firstly, the state of charge (SOC) of the super-capacitor is limited according to the driving/braking mode of the vehicle to ensure that it is in a suitable working state, and fuzzy rules are designed to adaptively adjust the filtering time constant, to realize reasonable power allocation. Then, the positive… More >

Displaying 1361-1370 on page 137 of 1494. Per Page