Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    Blockchain-Based Certificateless Cross-Domain Authentication Scheme in the Industrial Internet of Things

    Zhaobin Li*, Xiantao Liu*, Nan Zhang, Zhanzhen Wei

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3835-3854, 2024, DOI:10.32604/cmc.2024.053950 - 12 September 2024

    Abstract The Industrial Internet of Things (IIoT) consists of massive devices in different management domains, and the lack of trust among cross-domain entities leads to risks of data security and privacy leakage during information exchange. To address the above challenges, a viable solution that combines Certificateless Public Key Cryptography (CL-PKC) with blockchain technology can be utilized. However, as many existing schemes rely on a single Key Generation Center (KGC), they are prone to problems such as single points of failure and high computational overhead. In this case, this paper proposes a novel blockchain-based certificateless cross-domain authentication… More >

  • Open Access

    ARTICLE

    Multi-Label Image Classification Based on Object Detection and Dynamic Graph Convolutional Networks

    Xiaoyu Liu, Yong Hu*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4413-4432, 2024, DOI:10.32604/cmc.2024.053938 - 12 September 2024

    Abstract Multi-label image classification is recognized as an important task within the field of computer vision, a discipline that has experienced a significant escalation in research endeavors in recent years. The widespread adoption of convolutional neural networks (CNNs) has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification. However, in multi-label image classification tasks, it is crucial to consider the correlation between labels. In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features, many existing studies use graph convolutional networks (GCN) for… More >

  • Open Access

    ARTICLE

    Towards Improving the Quality of Requirement and Testing Process in Agile Software Development: An Empirical Study

    Irum Ilays1, Yaser Hafeez1,*, Nabil Almashfi2, Sadia Ali1, Mamoona Humayun3,*, Muhammad Aqib1, Ghadah Alwakid4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3761-3784, 2024, DOI:10.32604/cmc.2024.053830 - 12 September 2024

    Abstract Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification, which affect the testing process. Therefore, it is difficult to identify all faults in software. As requirement changes continuously, it increases the irrelevancy and redundancy during testing. Due to these challenges; fault detection capability decreases and there arises a need to improve the testing process, which is based on changes in requirements specification. In this research, we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment. The research objective is to… More >

  • Open Access

    ARTICLE

    IMTNet: Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid

    Huan Wang1, Hong Wang1, Zhongyuan Jiang2,*, Qing Qian1, Yong Long1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.053740 - 12 September 2024

    Abstract Copy-Move Forgery Detection (CMFD) is a technique that is designed to identify image tampering and locate suspicious areas. However, the practicality of the CMFD is impeded by the scarcity of datasets, inadequate quality and quantity, and a narrow range of applicable tasks. These limitations significantly restrict the capacity and applicability of CMFD. To overcome the limitations of existing methods, a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach. Firstly, this study formulates the objective task and network relationship as an optimization problem using transfer learning. Furthermore, it thoroughly discusses… More >

  • Open Access

    ARTICLE

    Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System

    Wen-Tsai Sung1, Indra Griha Tofik Isa1,2, Sung-Jung Hsiao3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3733-3759, 2024, DOI:10.32604/cmc.2024.053634 - 12 September 2024

    Abstract Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income. The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity. In this study, a Wireless Sensor Networks (“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning (DRL) technology in carrying out prediction tasks based on three classifications: “optimal,” “sub-optimal,” or “not-optimal” conditions based on three parameters including humidity, temperature, and soil moisture. The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.… More >

  • Open Access

    ARTICLE

    Abnormal Action Detection Based on Parameter-Efficient Transfer Learning in Laboratory Scenarios

    Changyu Liu1, Hao Huang1, Guogang Huang2,*, Chunyin Wu1, Yingqi Liang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4219-4242, 2024, DOI:10.32604/cmc.2024.053625 - 12 September 2024

    Abstract Laboratory safety is a critical area of broad societal concern, particularly in the detection of abnormal actions. To enhance the efficiency and accuracy of detecting such actions, this paper introduces a novel method called TubeRAPT (Tubelet Transformer based on Adapter and Prefix Training Module). This method primarily comprises three key components: the TubeR network, an adaptive clustering attention mechanism, and a prefix training module. These components work in synergy to address the challenge of knowledge preservation in models pre-trained on large datasets while maintaining training efficiency. The TubeR network serves as the backbone for spatio-temporal… More >

  • Open Access

    ARTICLE

    Joint Biomedical Entity and Relation Extraction Based on Multi-Granularity Convolutional Tokens Pairs of Labeling

    Zhaojie Sun1, Linlin Xing1,*, Longbo Zhang1, Hongzhen Cai2, Maozu Guo3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4325-4340, 2024, DOI:10.32604/cmc.2024.053588 - 12 September 2024

    Abstract Extracting valuable information from biomedical texts is one of the current research hotspots of concern to a wide range of scholars. The biomedical corpus contains numerous complex long sentences and overlapping relational triples, making most generalized domain joint modeling methods difficult to apply effectively in this field. For a complex semantic environment in biomedical texts, in this paper, we propose a novel perspective to perform joint entity and relation extraction; existing studies divide the relation triples into several steps or modules. However, the three elements in the relation triples are interdependent and inseparable, so we… More >

  • Open Access

    ARTICLE

    Physical Layer Security of 6G Vehicular Networks with UAV Systems: First Order Secrecy Metrics, Optimization, and Bounds

    Sagar Kavaiya1, Hiren Mewada2,*, Sagarkumar Patel3, Dharmendra Chauhan3, Faris A. Almalki4, Hana Mohammed Mujlid4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3685-3711, 2024, DOI:10.32604/cmc.2024.053587 - 12 September 2024

    Abstract The mobility and connective capabilities of unmanned aerial vehicles (UAVs) are becoming more and more important in defense, commercial, and research domains. However, their open communication makes UAVs susceptible to undesirable passive attacks such as eavesdropping or jamming. Recently, the inefficiency of traditional cryptography-based techniques has led to the addition of Physical Layer Security (PLS). This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments, proposing a solution to complement the conventional cryptography approach. Initially, we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems, namely hybrid… More >

  • Open Access

    ARTICLE

    GATiT: An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning

    Yu Song, Pengcheng Wu, Dongming Dai, Mingyu Gui, Kunli Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4767-4790, 2024, DOI:10.32604/cmc.2024.053506 - 12 September 2024

    Abstract The growing prevalence of knowledge reasoning using knowledge graphs (KGs) has substantially improved the accuracy and efficiency of intelligent medical diagnosis. However, current models primarily integrate electronic medical records (EMRs) and KGs into the knowledge reasoning process, ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text. To better integrate EMR text information, we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning (GATiT), which comprises text representation, subgraph construction, knowledge reasoning, and diagnostic classification. In the… More >

  • Open Access

    ARTICLE

    Research on Restoration of Murals Based on Diffusion Model and Transformer

    Yaoyao Wang1, Mansheng Xiao1,*, Yuqing Hu2, Jin Yan1, Zeyu Zhu1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4433-4449, 2024, DOI:10.32604/cmc.2024.053232 - 12 September 2024

    Abstract Due to the limitations of a priori knowledge and convolution operation, the existing image restoration techniques cannot be directly applied to the cultural relics mural restoration, in order to more accurately restore the original appearance of the cultural relics mural images, an image restoration based on the denoising diffusion probability model (Denoising Diffusion Probability Model (DDPM)) and the Transformer method. The process involves two steps: in the first step, the damaged mural image is firstly utilized as the condition to generate the noise image, using the time, condition and noise image patch as the inputs… More >

Displaying 1541-1550 on page 155 of 7234. Per Page