Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    A Novel Energy and Communication Aware Scheduling on Green Cloud Computing

    Laila Almutairi1, Shabnam Mohamed Aslam2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2791-2811, 2023, DOI:10.32604/cmc.2023.040268 - 26 December 2023

    Abstract The rapid growth of service-oriented and cloud computing has created large-scale data centres worldwide. Modern data centres’ operating costs mostly come from back-end cloud infrastructure and energy consumption. In cloud computing, extensive communication resources are required. Moreover, cloud applications require more bandwidth to transfer large amounts of data to satisfy end-user requirements. It is also essential that no communication source can cause congestion or bag loss owing to unnecessary switching buffers. This paper proposes a novel Energy and Communication (EC) aware scheduling (EC-scheduler) algorithm for green cloud computing, which optimizes data centre energy consumption and… More >

  • Open Access

    ARTICLE

    The Detection of Fraudulent Smart Contracts Based on ECA-EfficientNet and Data Enhancement

    Xuanchen Zhou1,2,3, Wenzhong Yang2,3,*, Liejun Wang2,3, Fuyuan Wei2,3, KeZiErBieKe HaiLaTi2,3, Yuanyuan Liao2,3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4073-4087, 2023, DOI:10.32604/cmc.2023.040253 - 26 December 2023

    Abstract With the increasing popularity of Ethereum, smart contracts have become a prime target for fraudulent activities such as Ponzi, honeypot, gambling, and phishing schemes. While some researchers have studied intelligent fraud detection, most research has focused on identifying Ponzi contracts, with little attention given to detecting and preventing gambling or phishing contracts. There are three main issues with current research. Firstly, there exists a severe data imbalance between fraudulent and non-fraudulent contracts. Secondly, the existing detection methods rely on diverse raw features that may not generalize well in identifying various classes of fraudulent contracts. Lastly,… More >

  • Open Access

    ARTICLE

    YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security

    Fares Alharbi1, Reem Alshahrani2, Mohammed Zakariah3,*, Amjad Aldweesh1, Abdulrahman Abdullah Alghamdi1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3697-3722, 2023, DOI:10.32604/cmc.2023.040086 - 26 December 2023

    Abstract Privacy and trust are significant issues in intelligent transportation systems (ITS). Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels, optical fiber, and blockchain technology. The Internet of Things (IoT) is a network of connected, interconnected gadgets. Privacy issues occasionally arise due to the amount of data generated. However, they have been primarily addressed by blockchain and smart contract technology. While there are still security issues with smart contracts, primarily due to the complexity of writing… More >

  • Open Access

    ARTICLE

    Optical Neural Networks: Analysis and Prospects for 5G Applications

    Doaa Sami Khafaga1, Zongming Lv2, Imran Khan3,4, Shebnam M. Sefat5, Amel Ali Alhussan1,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3723-3740, 2023, DOI:10.32604/cmc.2023.039956 - 26 December 2023

    Abstract With the capacities of self-learning, acquainted capacities, high-speed looking for ideal arrangements, solid nonlinear fitting, and mapping self-assertively complex nonlinear relations, neural systems have made incredible advances and accomplished broad application over the final half-century. As one of the foremost conspicuous methods for fake insights, neural systems are growing toward high computational speed and moo control utilization. Due to the inborn impediments of electronic gadgets, it may be troublesome for electronic-implemented neural systems to make the strides these two exhibitions encourage. Optical neural systems can combine optoelectronic procedures and neural organization models to provide ways… More >

  • Open Access

    ARTICLE

    Learning Dual-Domain Calibration and Distance-Driven Correlation Filter: A Probabilistic Perspective for UAV Tracking

    Taiyu Yan1, Yuxin Cao1, Guoxia Xu1, Xiaoran Zhao2, Hu Zhu1, Lizhen Deng3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3741-3764, 2023, DOI:10.32604/cmc.2023.039828 - 26 December 2023

    Abstract Unmanned Aerial Vehicle (UAV) tracking has been possible because of the growth of intelligent information technology in smart cities, making it simple to gather data at any time by dynamically monitoring events, people, the environment, and other aspects in the city. The traditional filter creates a model to address the boundary effect and time filter degradation issues in UAV tracking operations. But these methods ignore the loss of data integrity terms since they are overly dependent on numerous explicit previous regularization terms. In light of the aforementioned issues, this work suggests a dual-domain Jensen-Shannon divergence… More >

  • Open Access

    ARTICLE

    Modeling a Novel Hyper-Parameter Tuned Deep Learning Enabled Malaria Parasite Detection and Classification

    Tamal Kumar Kundu1, Dinesh Kumar Anguraj1,*, S. V. Sudha2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3289-3304, 2023, DOI:10.32604/cmc.2023.039515 - 26 December 2023

    Abstract A theoretical methodology is suggested for finding the malaria parasites’ presence with the help of an intelligent hyper-parameter tuned Deep Learning (DL) based malaria parasite detection and classification (HPTDL-MPDC) in the smear images of human peripheral blood. Some existing approaches fail to predict the malaria parasitic features and reduce the prediction accuracy. The trained model initiated in the proposed system for classifying peripheral blood smear images into the non-parasite or parasite classes using the available online dataset. The Adagrad optimizer is stacked with the suggested pre-trained Deep Neural Network (DNN) with the help of the… More >

  • Open Access

    ARTICLE

    Nonlinear Components of a Block Cipher over Eisenstein Integers

    Mohammad Mazyad Hazzazi1, Muhammad Sajjad2, Zaid Bassfar3, Tariq Shah2,*, Ashwag Albakri4

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3659-3675, 2023, DOI:10.32604/cmc.2023.039013 - 26 December 2023

    Abstract In block ciphers, the nonlinear components, also known as substitution boxes (S-boxes), are used with the purpose to induce confusion in cryptosystems. For the last decade, most of the work on designing S-boxes over the points of elliptic curves, chaotic maps, and Gaussian integers has been published. The main purpose of these studies is to hide data and improve the security levels of crypto algorithms. In this work, we design pair of nonlinear components of a block cipher over the residue class of Eisenstein integers (EI). The fascinating features of this structure provide S-boxes pair More >

  • Open Access

    ARTICLE

    Analysis on Operational Safety and Efficiency of FAO System in Urban Rail Transit

    Kaige Guo, Jin Zhou*, Xiaoming Zhang, Di Sun*, Zishuo Wang, Lixian Zhao

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3677-3696, 2023, DOI:10.32604/cmc.2023.038660 - 26 December 2023

    Abstract This paper discusses two urgent problems that need to be solved in fully automatic operation (FAO) for urban rail transit. The first is the analysis of safety in FAO, while another is the analysis of efficiency in FAO. Firstly, this paper establishes an operational safety evaluation index system from the perspective of operation for the unique or typical risk sources of the FAO system, and uses the analytic hierarchy process (AHP) to evaluate the indicators, analyzes various factors that affect the safe operation of FAO, and provides safety management recommendations for FAO lines operation to… More >

  • Open Access

    ARTICLE

    Fuzzy Logic Inference System for Managing Intensive Care Unit Resources Based on Knowledge Graph

    Ahmad F Subahi*, Areej Athama

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3801-3816, 2023, DOI:10.32604/cmc.2023.034522 - 26 December 2023

    Abstract With the rapid growth in the availability of digital health-related data, there is a great demand for the utilization of intelligent information systems within the healthcare sector. These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks. They can also provide various sustainable health services such as medical error reduction, diagnosis acceleration, and clinical services quality improvement. The intensive care unit (ICU) is one of the most important hospital units. However, there are limited rooms and resources in most hospitals. During times of seasonal diseases and pandemics, ICUs… More >

  • Open Access

    ARTICLE

    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275 - 26 December 2023

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

Displaying 2231-2240 on page 224 of 7234. Per Page