Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    FIBTNet: Building Change Detection for Remote Sensing Images Using Feature Interactive Bi-Temporal Network

    Jing Wang1,2,*, Tianwen Lin1, Chen Zhang1, Jun Peng1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4621-4641, 2024, DOI:10.32604/cmc.2024.053206 - 12 September 2024

    Abstract In this paper, a feature interactive bi-temporal change detection network (FIBTNet) is designed to solve the problem of pseudo change in remote sensing image building change detection. The network improves the accuracy of change detection through bi-temporal feature interaction. FIBTNet designs a bi-temporal feature exchange architecture (EXA) and a bi-temporal difference extraction architecture (DFA). EXA improves the feature exchange ability of the model encoding process through multiple space, channel or hybrid feature exchange methods, while DFA uses the change residual (CR) module to improve the ability of the model decoding process to extract different features More >

  • Open Access

    ARTICLE

    Analysis and Modeling of Mobile Phone Activity Data Using Interactive Cyber-Physical Social System

    Farhan Amin, Gyu Sang Choi*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3507-3521, 2024, DOI:10.32604/cmc.2024.053183 - 12 September 2024

    Abstract Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community. The call detail records (CDR) of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior. It is evident from the recent literature that cyber-physical systems (CPS) were used in the analytics and modeling of telecom data. In addition, CPS is used to provide valuable services in smart cities. In general, a typical telecom company has millions of subscribers and thus generates massive amounts of data. From this aspect, data storage, analysis, and processing… More >

  • Open Access

    ARTICLE

    RWNeRF: Robust Watermarking Scheme for Neural Radiance Fields Based on Invertible Neural Networks

    Wenquan Sun1,2, Jia Liu1,2,*, Weina Dong1,2, Lifeng Chen1,2, Fuqiang Di1,2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4065-4083, 2024, DOI:10.32604/cmc.2024.053115 - 12 September 2024

    Abstract As neural radiance fields continue to advance in 3D content representation, the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing. In response to this challenge, this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking. Leveraging 2D image watermarking technology for 3D scene protection, the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from… More >

  • Open Access

    ARTICLE

    AI-Driven Energy Optimization in UAV-Assisted Routing for Enhanced Wireless Sensor Networks Performance

    Syed Kamran Haider1,2, Abbas Ahmed2, Noman Mujeeb Khan2, Ali Nauman3,*, Sung Won Kim3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4085-4110, 2024, DOI:10.32604/cmc.2024.052997 - 12 September 2024

    Abstract In recent advancements within wireless sensor networks (WSN), the deployment of unmanned aerial vehicles (UAVs) has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality. This research introduces a sophisticated framework, driven by computational intelligence, that merges clustering techniques with UAV mobility to refine routing strategies in WSNs. The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads (CHs). This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination. Employing a greedy algorithm More >

  • Open Access

    ARTICLE

    FPGA Accelerators for Computing Interatomic Potential-Based Molecular Dynamics Simulation for Gold Nanoparticles: Exploring Different Communication Protocols

    Ankitkumar Patel1, Srivathsan Vasudevan1,*, Satya Bulusu2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3803-3818, 2024, DOI:10.32604/cmc.2024.052851 - 12 September 2024

    Abstract Molecular Dynamics (MD) simulation for computing Interatomic Potential (IAP) is a very important High-Performance Computing (HPC) application. MD simulation on particles of experimental relevance takes huge computation time, despite using an expensive high-end server. Heterogeneous computing, a combination of the Field Programmable Gate Array (FPGA) and a computer, is proposed as a solution to compute MD simulation efficiently. In such heterogeneous computation, communication between FPGA and Computer is necessary. One such MD simulation, explained in the paper, is the (Artificial Neural Network) ANN-based IAP computation of gold (Au147 & Au309) nanoparticles. MD simulation calculates the forces… More >

  • Open Access

    ARTICLE

    Internet of Things Enabled DDoS Attack Detection Using Pigeon Inspired Optimization Algorithm with Deep Learning Approach

    Turki Ali Alghamdi, Saud S. Alotaibi*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4047-4064, 2024, DOI:10.32604/cmc.2024.052796 - 12 September 2024

    Abstract Internet of Things (IoTs) provides better solutions in various fields, namely healthcare, smart transportation, home, etc. Recognizing Denial of Service (DoS) outbreaks in IoT platforms is significant in certifying the accessibility and integrity of IoT systems. Deep learning (DL) models outperform in detecting complex, non-linear relationships, allowing them to effectually severe slight deviations from normal IoT activities that may designate a DoS outbreak. The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection, permitting proactive reduction events to be executed, hence securing the IoT network’s safety and functionality. Subsequently, this… More >

  • Open Access

    ARTICLE

    Computational Approach for Automated Segmentation and Classification of Region of Interest in Lateral Breast Thermograms

    Dennies Tsietso1,*, Abid Yahya1, Ravi Samikannu1, Basit Qureshi2, Muhammad Babar3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4749-4765, 2024, DOI:10.32604/cmc.2024.052793 - 12 September 2024

    Abstract Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide. Various Computer-Aided Diagnosis (CAD) tools, based on breast thermograms, have been developed for early detection of this disease. However, accurately segmenting the Region of Interest (ROI) from thermograms remains challenging. This paper presents an approach that leverages image acquisition protocol parameters to identify the lateral breast region and estimate its bottom boundary using a second-degree polynomial. The proposed method demonstrated high efficacy, achieving an impressive Jaccard coefficient of 86% and a Dice… More >

  • Open Access

    ARTICLE

    Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization

    Ahmad Yahiya Ahmad Bani Ahmad1, Jafar Alzubi2, Sophers James3, Vincent Omollo Nyangaresi4,5,*, Chanthirasekaran Kutralakani6, Anguraju Krishnan7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4791-4812, 2024, DOI:10.32604/cmc.2024.052771 - 12 September 2024

    Abstract In recent years, wearable devices-based Human Activity Recognition (HAR) models have received significant attention. Previously developed HAR models use hand-crafted features to recognize human activities, leading to the extraction of basic features. The images captured by wearable sensors contain advanced features, allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions. Poor lighting and limited sensor capabilities can impact data quality, making the recognition of human actions a challenging task. The unimodal-based HAR approaches are not suitable in a real-time environment. Therefore, an updated HAR model is… More >

  • Open Access

    ARTICLE

    MarkINeRV: A Robust Watermarking Scheme for Neural Representation for Videos Based on Invertible Neural Networks

    Wenquan Sun1,2, Jia Liu1,2,*, Lifeng Chen1,2, Weina Dong1,2, Fuqiang Di1,2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4031-4046, 2024, DOI:10.32604/cmc.2024.052745 - 12 September 2024

    Abstract Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos (NeRV). While explicit methods exist for accurately embedding ownership or copyright information in video data, the nascent NeRV framework has yet to address this issue comprehensively. In response, this paper introduces MarkINeRV, a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV, which models the embedding and extraction of watermarks as a pair of… More >

  • Open Access

    ARTICLE

    Robust and Discriminative Feature Learning via Mutual Information Maximization for Object Detection in Aerial Images

    Xu Sun, Yinhui Yu*, Qing Cheng

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4149-4171, 2024, DOI:10.32604/cmc.2024.052725 - 12 September 2024

    Abstract Object detection in unmanned aerial vehicle (UAV) aerial images has become increasingly important in military and civil applications. General object detection models are not robust enough against interclass similarity and intraclass variability of small objects, and UAV-specific nuisances such as uncontrolled weather conditions. Unlike previous approaches focusing on high-level semantic information, we report the importance of underlying features to improve detection accuracy and robustness from the information-theoretic perspective. Specifically, we propose a robust and discriminative feature learning approach through mutual information maximization (RD-MIM), which can be integrated into numerous object detection methods for aerial images.… More >

Displaying 1551-1560 on page 156 of 7234. Per Page