Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (558)
  • Open Access

    ARTICLE

    Inertia Support Coordinated Control Strategy for Wind Power Connected to the Grid through MMC-HVDC Considering Secondary Frequency Drop

    Yi Qi1, Yuhao Xie2,*, Zhibing Hu1, Fan Ding1, Junxian Ma3, Liang Zhao3, Shouqi Jiang2

    Energy Engineering, DOI:10.32604/ee.2025.073663

    Abstract To address the challenges of low inertia support capability and poor frequency stability encountered in the process of power system electronification, this paper designs a coordinated inertia support control strategy for offshore wind power connected to the grid via Modular Multilevel Converter Based High Voltage Direct Current (MMC-HVDC), which enhances the system inertia level and accounts for secondary frequency drop. In terms of inertia support, building on the existing coupling relationship between grid frequency and DC voltage, the influence of wind turbine (WT) rotor speed is further integrated, leading to the proposal of a virtual… More >

  • Open Access

    ARTICLE

    Parameter Adaptive SVIC FR Strategy for Doubly-Fed Induction Generators Considering Wind Condition Zoning

    Li Sun, Fanjun Zeng, Hongbo Liu, Chenglian Ma*, Qiting Zhang, Jingzhou Zhu

    Energy Engineering, DOI:10.32604/ee.2025.073405

    Abstract The widespread integration of large-scale wind power has resulted in decreased equivalent inertia in power systems, thereby compromising their frequency regulation (FR) capabilities. Conventional synthetic inertia control faces challenges under stochastic wind conditions, including inadequate utilization of rotor kinetic energy in high wind condition regions and the risk of triggering rotor speed stability limits in low wind condition regions. To overcome these limitations, in this paper, a parameter adaptive synthetic virtual inertial control (SVIC) framework based on wind speed partition is proposed. The control mechanisms are designed differently across partitioned wind condition intervals: in high-wind-speed More >

  • Open Access

    ARTICLE

    Hybrid Temporal Convolutional Network-Transformer Model Optimized by Particle Swarm Optimization for State of Charge Estimation of Lithium-Ion Batteries

    Xincheng Han1, Hongyan Ma1,2,3,*, Shuo Meng1, Chengzhi Ren1

    Energy Engineering, DOI:10.32604/ee.2025.072906

    Abstract Lithium-ion (Li-ion) batteries stand as the dominant energy storage solution, despite their widespread adoption, precisely determining the state of charge (SOC) continues to pose significant difficulties, with direct implications for battery safety, operational reliability, and overall performance. Current SOC estimation techniques often demonstrate limited accuracy, particularly when confronted with complex operational scenarios and wide temperature variations, where their generalization capacity and dynamic adaptation prove insufficient. To address these shortcomings, this work presents a PSO-TCN-Transformer network model for SOC estimation. This research uses the Particle Swarm Optimization (PSO) method to automatically configure the architectural parameters of… More >

  • Open Access

    ARTICLE

    Harvesting Wave Energy: An Economic and Technological Assessment of the Coastal Areas in Sarawak

    Dexiecia Anak Francis1, Jalal Tavalaei1, Hadi Nabipour Afrouzi2,*

    Energy Engineering, DOI:10.32604/ee.2025.070501

    Abstract Wave energy is a promising form of marine renewable energy that offers a sustainable pathway for electricity generation in coastal regions. Despite Malaysia’s extensive coastline, the exploration of wave energy in Sarawak remains limited due to economic, technical, and environmental challenges that hinder its implementation. Compared to other renewable energy sources, wave energy is underutilized largely because of cost uncertainties and the lack of local performance data. This research aims to identify the most suitable coastal zone in Sarawak that achieves an optimal balance between energy potential, cost-effectiveness, and environmental impact, particularly in relation to… More >

  • Open Access

    ARTICLE

    Heating the Future: Solar Hot Water Collectors for Energy-Efficient Homes in Sweden

    Mehran Karimi1, Hesamodin Heidarigoujani1, Mehdi Jahangiri1,*, Milad Torabi Anaraki2, Daryosh Mohamadi Janaki3

    Energy Engineering, DOI:10.32604/ee.2025.070190

    Abstract The technical, economic, and environmental performance of solar hot-water (SWH) systems for Swedish residential apartments—where approximately 80% of household energy is devoted to space heating and sanitary hot-water production—was assessed. Two collector types, flat plate (FP) and evacuated tube (ET), were simulated in TSOL Pro 5.5 for five major cities (Stockholm, Göteborg, Malmö, Uppsala, Linköping). Climatic data and cold-water temperatures were sourced from Meteonorm 7.1, and economic parameters were derived from recent national statistics and literature. All calculations explicitly accounted for heat losses from collectors, storage tanks, and internal and external piping systems, and established… More >

  • Open Access

    ARTICLE

    Optimal Working Fluid Selection and Performance Enhancement of ORC Systems for Diesel Engine Waste Heat Recovery

    Zujun Ding, Shuaichao Wu, Chenliang Ji, Xinyu Feng, Yuanyuan Shi, Baolian Liu, Wan Chen, Qiuchan Bai, Hengrui Zhou, Hui Huang, Jie Ji*

    Energy Engineering, DOI:10.32604/ee.2025.068106

    Abstract In the quest to enhance energy efficiency and reduce environmental impact in the transportation sector, the recovery of waste heat from diesel engines has become a critical area of focus. This study provided an exhaustive thermodynamic analysis optimizing Organic Rankine Cycle (ORC) systems for waste heat recovery from diesel engines. The study assessed the performance of five candidate working fluids—R11, R123, R113, R245fa, and R141b—under a range of operating conditions, specifically varying overheat temperatures and evaporation pressures. The results indicated that the choice of working fluid substantially influences the system’s exergetic efficiency, net output power,… More >

  • Open Access

    ARTICLE

    Power Grid Monitoring Alarm Events Identification Based on Large Language Model

    Qiang Xu1,*, Leyao Cong1, Jianing Wang1, Xingyu Zhu1, Shaojun Cui1, Guoqiang Sun2, Xueheng Shi2

    Energy Engineering, DOI:10.32604/ee.2025.073947

    Abstract Power system faults can trigger a massive influx of complex alarm signals to the operation and maintenance center, posing significant challenges for dispatchers in accurately identifying the underlying faults. To address the issues of sample imbalance and low accuracy in traditional power grid monitoring alarm event identification methods, a power grid monitoring alarm event identification method based on BERT large language model is proposed. Firstly, information entropy is employed to filter effective monitoring alarm signals, and the k-means clustering algorithm is used to group all alarm signals into different event types, forming the initial power… More >

  • Open Access

    ARTICLE

    Optimal Scheduling of Integrated Energy Systems with P2G-CCS Coupling and Hydrogen-Blended Natural Gas under Tiered Carbon Trading

    Yansen Sun1,2, Yi Ding3, Hualei Cui4, Yuanchao Hui5, Yupeng He1,2,*

    Energy Engineering, DOI:10.32604/ee.2025.072860

    Abstract Integrated energy systems (IES) are pivotal for achieving low-carbon transitions, yet their optimization under carbon constraints remains challenging. This paper proposes an optimal scheduling model for IES that synergistically combines power-to-gas coupled with carbon capture systems (P2G-CCS) and hydrogen-blended natural gas under a tiered carbon trading mechanism. The model innovatively refines the P2G process into two stages (electrolysis and methanation), utilizing methanation reaction heat to enhance efficiency. It further incorporates hydrogen blending into gas turbines and boilers and implements a tiered carbon trading mechanism to constrain emissions. The objective is to minimize total costs, including… More >

  • Open Access

    ARTICLE

    Multi-Time Scale Optimization Scheduling of Data Center Considering Workload Shift and Refrigeration Regulation

    Luyao Liu*, Xiao Liao, Yiqian Li, Shaofeng Zhang

    Energy Engineering, DOI:10.32604/ee.2025.072631

    Abstract Data center industries have been facing huge energy challenges due to escalating power consumption and associated carbon emissions. In the context of carbon neutrality, the integration of data centers with renewable energy has become a prevailing trend. To advance the renewable energy integration in data centers, it is imperative to thoroughly explore the data centers’ operational flexibility. Computing workloads and refrigeration systems are recognized as two promising flexible resources for power regulation within data center micro-grids. This paper identifies and categorizes delay-tolerant computing workloads into three types (long-running non-interruptible, long-running interruptible, and short-running) and develops… More >

  • Open Access

    ARTICLE

    Hydraulic Fracture Conductivity Loss Mechanisms for Unconsolidated Sands Considering Fine Migrations and Proppant Embedments

    Xian Shi1,2,*, Botao Zhang1,2, Weidong Zhang1,2, Zenghua Ma3, Bo Zhang3, Ahmad Ramezanzadeh4, Bin Li5, Jian Mao5

    Energy Engineering, DOI:10.32604/ee.2025.073586

    Abstract To investigate the mechanism governing the continuous decline in fracture conductivity of unconsolidated sandstone reservoirs post-hydraulic fracturing, this study centers on the synergistic effects of two key mechanisms—particle migration and proppant embedment. Through the integration of laboratory experiments and computational fluid dynamics-discrete element method (CFD-DEM) coupled numerical simulations, this study systematically examines the influence patterns of varying closure pressures, particle concentrations, fluid properties, and proppant parameters on fracture conductivity. The experimental results demonstrate that particle migration induces pore blockage within the proppant packing layer. When the fines mass concentration reaches 10%, fracture conductivity is almost… More >

Displaying 91-100 on page 10 of 558. Per Page