Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (534)
  • Open Access

    ARTICLE

    Thermogravimetric and Synergy Analysis of the Co-Pyrolysis of Coconut Husk and Laminated Plastic Packaging for Biofuel Production

    Joselito Olalo*

    Energy Engineering, Vol.119, No.2, pp. 555-567, 2022, DOI:10.32604/EE.2022.018864

    Abstract Unlike plastic, biomass can also be converted and produce high quality of biofuel. Co-pyrolysis of coconut husk (CH) and laminated plastic packaging (LPP) were done in this study. Synergy between these two feedstock was calculated by using thermogravimetric (TGA) and derivative thermogravimetry (DTG) analysis. Different activation energies of the reactions in the co-pyrolysis of CH and LPP were evaluated using the Coats-Redfern method. Results showed an activation energy ranging from 8 to 37 kJ/mol in the different percentage composition of the co-pyrolysis. Also, thermal degradation happens in two-stages in the copyrolysis of CH and LPP, in which CH degrades at… More >

  • Open Access

    ARTICLE

    Model-Free Sliding Mode Control for PMSM Drive System Based on Ultra-Local Model

    Kaihui Zhao1,2, Wenchang Liu1, Tonghuan Yin3, Ruirui Zhou4, Wangke Dai1 and Gang Huang5,*

    Energy Engineering, Vol.119, No.2, pp. 767-780, 2022, DOI:10.32604/EE.2021.018617

    Abstract This paper presents a novel model-free sliding mode control (MFSMC) method to improve the speed response of permanent magnet synchronous machine (PMSM) drive system. The ultra-local model (ULM) is first derived based on the input and the output of the PMSM. Then, the novel MFSMC method is presented, and the controller is designed based on ULM and MFSMC. A sliding mode observer (SMO) is constructed to estimate the unknown part of the ULM. The estimated unknown part is feedbacked to MFSMC controller to perform compensation for parameter perturbations and external disturbances. Compared with the sliding mode control (SMC) method, the… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Method of Wind Turbine Based on Improved Anti-Noise Residual Shrinkage Network

    Xiaolei Li*

    Energy Engineering, Vol.119, No.2, pp. 665-680, 2022, DOI:10.32604/ee.2022.019292

    Abstract Aiming at the difficulty of rolling bearing fault diagnosis of wind turbine under noise environment, a new bearing fault identification method based on the Improved Anti-noise Residual Shrinkage Network (IADRSN) is proposed. Firstly, the vibration signals of wind turbine rolling bearings were preprocessed to obtain data samples divided into training and test sets. Then, a bearing fault diagnosis model based on the improved anti-noise residual shrinkage network was established. To improve the ability of fault feature extraction of the model, the convolution layer in the deep residual shrinkage network was replaced with a Dense-Net layer. To further improve the anti-noise… More >

  • Open Access

    ARTICLE

    Multifunction Battery Energy Storage System for Distribution Networks

    Omar H. Abdalla1,*, Gamal Abdel-Salam2, Azza A. A. Mostafa3

    Energy Engineering, Vol.119, No.2, pp. 569-589, 2022, DOI:10.32604/ee.2022.018693

    Abstract Battery Energy Storage System (BESS) is one of the potential solutions to increase energy system flexibility, as BESS is well suited to solve many challenges in transmission and distribution networks. Examples of distribution network’s challenges, which affect network performance, are: (i) Load disconnection or technical constraints violation, which may happen during reconfiguration after fault, (ii) Unpredictable power generation change due to Photovoltaic (PV) penetration, (iii) Undesirable PV reverse power, and (iv) Low Load Factor (LF) which may affect electricity price. In this paper, the BESS is used to support distribution networks in reconfiguration after a fault, increasing Photovoltaic (PV) penetration,… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Small-channel Pulsating Heat Pipe Based on Dimensional Analysis and ANN Model

    Xuehui Wang1, Edward Wright1, Zeyu Liu1, Neng Gao2,*, Ying Li3

    Energy Engineering, Vol.119, No.2, pp. 801-814, 2022, DOI:10.32604/ee.2022.018241

    Abstract The pulsating heat pipe is a very promising heat dissipation device to address the challenge of higher heat-flux electronic chips, as it is characterised by excellent heat transfer ability and flexibility for miniaturisation. To boost the application of PHP, reliable heat transfer performance evaluation models are especially important. In this paper, a heat transfer correlation was firstly proposed for closed PHP with various working fluids (water, ethanol, methanol, R123, acetone) based on collected experimental data. Dimensional analysis was used to group the parameters. It was shown that the average absolute deviation (AAD) and correlation coefficient (r) of the correlation were… More >

  • Open Access

    ARTICLE

    Impacts of Rotation on Unsteady Fluid Flow and Energy Distribution through a Bending Duct with Rectangular Cross Section

    Mohammad Zohurul Islam1, Rabindra Nath Mondal2, Suvash C. Saha1,*

    Energy Engineering, Vol.119, No.2, pp. 453-472, 2022, DOI:10.32604/ee.2022.018160

    Abstract

    A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios (l) are essential for various engineering applications such as in chemical, mechanical, bio-mechanical and bio-medical engineering. So highly ambitious researchers have given significant attention to study new characteristics of fluid flow in a curved duct. The flow characterization in the rectangular duct has been studied over a wide range of numerical and selective experimental studies. However, proper knowledge with the effects of Coriolis force for different aspect ratios is important for better understanding of the transitional behaviour and the subsequent heat generation, which… More >

  • Open Access

    ARTICLE

    Kalman Filter Estimation of Lithium Battery SOC Based on Model Capacity Updating

    Min Deng1, Quan Min1, Ge Yang1, Man Yu2,3,*

    Energy Engineering, Vol.119, No.2, pp. 739-754, 2022, DOI:10.32604/ee.2022.018025

    Abstract High-precision estimation of lithium battery SOC can effectively optimize vehicle energy management, improve lithium battery safety protection, extend lithium battery cycle life, and reduce new energy vehicle costs. Based on the forgetting factor recursive least square method (FFRLS), Thevenin equivalent circuit model and Singular Value Decomposition-Unscented Kalman Filter (SVD-UKF), the SVD-UKF combined lithium battery SOC estimation algorithm with model capacity update is proposed, aiming at further improving the SOC estimation accuracy of lithium battery. The parameter identification of Thevenin model is studied by using the forgetting factor recursive least square method. To overcoming the shortcomings of Kalman filter linearization error… More >

  • Open Access

    ARTICLE

    Research on Power Consumption Anomaly Detection Based on Fuzzy Clustering and Trend Judgment

    Wei Xiong1,2, Xianshan Li1,2,*, Yu Zou3, Shiwei Su1,2, Li Zhi1,2

    Energy Engineering, Vol.119, No.2, pp. 755-765, 2022, DOI:10.32604/ee.2022.018009

    Abstract Among the end-users of the power grid, especially in the rural power grid, there are a large number of users and the situation is complex. In this complex situation, there are more leakage caused by insulation damage and a small number of users stealing electricity. Maintenance staff will take a long time to determine the location of the abnormal user meter box. In view of this situation, the method of subjective fuzzy clustering and quartile difference is adopted to determine the partition threshold. The power consumption data of end-users are divided into three regions: high, normal and low, which can… More >

  • Open Access

    ARTICLE

    Effect of Thermal Conductivity of Tube-Wall on Blow-Off Limit of a Micro-Jet Methane Diffusion Flame

    Bing Liu1, Yikun Chen1, Huachen Liu1, Qiao Wu1, Minghui Wang1, Jianlong Wan2,*

    Energy Engineering, Vol.119, No.2, pp. 815-826, 2022, DOI:10.32604/ee.2022.017988

    Abstract The operating range of the flow rate or flow velocity for the micro-jet flame is quite wide, which can be used as the heat source. In order to optimize the micro-jet tube combustor in terms of the solid material, the present paper numerically investigates the impact of thermal conductivity (λs) on the operating limit of micro-jet flame. Unexpectedly, the non-monotonic blow-off limits with the increase of λs is found, and the corresponding generation mechanisms are analyzed in terms of the thermal coupling effect, flow field, and strain effect. At first, the lower preheating temperature of the fuel and larger heat… More >

  • Open Access

    ARTICLE

    Identification and Classification of Multiple Power Quality Disturbances Using a Parallel Algorithm and Decision Rules

    Nagendra Kumar Swarnkar1, Om Prakash Mahela2, Baseem Khan3,*, Mahendra Lalwani1

    Energy Engineering, Vol.119, No.2, pp. 473-497, 2022, DOI:10.32604/ee.2022.017703

    Abstract A multiple power quality (MPQ) disturbance has two or more power quality (PQ) disturbances superimposed on a voltage signal. A compact and robust technique is required to identify and classify the MPQ disturbances. This manuscript investigated a hybrid algorithm which is designed using parallel processing of voltage with multiple power quality (MPQ) disturbance using stockwell transform (ST) and hilbert transform (HT). This will reduce the computational time to identify the MPQ disturbances, which makes the algorithm fast. A MPQ identification index (IPI) is computed using statistical features extracted from the voltage signal using the ST and HT. IPI has different… More >

Displaying 331-340 on page 34 of 534. Per Page