Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (123)
  • Open Access

    ARTICLE

    Identification of Air Cavities Using GPR under Different Soil Compaction Conditions Related to Sinkhole Formation

    Harith Iman Othman Kalam1, Ainon Nisa Othman1,*, Mohamad Hezri Razali1,*, Pauziyah Mohammad Salim1, Akhbaaruddin Abd Hamid2

    Revue Internationale de Géomatique, Vol.34, pp. 973-985, 2025, DOI:10.32604/RIG.2025.071917 - 24 December 2025

    Abstract Ground Penetrating Radar (GPR) is a widely used method that is non-destructive for underground or subsurface detection. It is used in various fields and has proved to be reliable and effective. This research focuses on detecting the presence of air cavities using GPR and analyzing the radargram output based on the compactness of soil and different frequencies. The compactness is used to illustrate the presence of cavities underground artificially. The research examines how variations in the compactness of soil affect the radargram response in showing the presence of cavities using different frequencies. Experimental results demonstrate More >

  • Open Access

    ARTICLE

    Atmospheric Delay Correction Using GNSS and GACOS Data in InSAR Land Subsidence Monitoring over Banting, Selangor

    Mohd Hakimi Abdul Rahman1, Amir Sharifuddin Ab Latip1,*, Zulkiflee Abd Latif1,2, Siti Balqis Mohd Tun1, Nur Azlina Hariffin1, Mohd Fikri Razali3

    Revue Internationale de Géomatique, Vol.34, pp. 959-972, 2025, DOI:10.32604/rig.2025.071109 - 12 December 2025

    Abstract Atmospheric phase delay, primarily caused by water vapor in the troposphere, is a major source of error in InSAR measurements, especially for land subsidence monitoring. This study integrates GNSS and GACOS data to correct tropospheric delay and enhance InSAR accuracy in Banting, Selangor. A total of 27 Sentinel-1A images, 14 GNSS stations, and 27 corresponding GACOS ZTD maps were used to monitor subsidence between 2023 and 2025. The InSAR data were processed using SNAP, StaMPS, and the TRAIN toolbox, incorporating both GNSS- and GACOS-derived ZTD corrections. The results show that applying atmospheric correction improved the… More >

  • Open Access

    ARTICLE

    Landslide Susceptibility Assessment Using Analytical Hierarchy Process (AHP) in Hulu Selangor

    Izzah Liyanamadihah Ibrahim1, Nurhanisah Hashim1,*, Ainon Nisa Othman1,*, Noorfatekah Talib2, Sarah Shaharuddin3

    Revue Internationale de Géomatique, Vol.34, pp. 915-937, 2025, DOI:10.32604/rig.2025.072321 - 09 December 2025

    Abstract This study aims to assess landslide susceptibility in Hulu Selangor, Selangor, Malaysia, an area that is exposed to rapid industrial and infrastructural growth. Six conditioning factors, such as slope, land use, lithology, road proximity, and river proximity, were integrated through the Analytic Hierarchy Process (AHP) in a GIS environment. The weights distribution analysis revealed slope (40.50%) and lithology (23.12%) as the most important factors, followed by river proximity (15.09%) and road proximity (13.76%). The developed susceptibility map was divided into five zones: very low (12.4%), low (18.7%), medium (35.6%), high (22.1%), and very high (11.2%).… More >

  • Open Access

    ARTICLE

    Spatial Analysis Tool for Urban Environmental Quality Assessment: Leveraging Geoinformatics and GIS

    Igor Musikhin*

    Revue Internationale de Géomatique, Vol.34, pp. 939-957, 2025, DOI:10.32604/rig.2025.071168 - 09 December 2025

    Abstract Urban environmental quality research is crucial, as cities become competitive centers concentrating human talent, industrial activity, and financial resources, contributing significantly to national economies. Municipal and government priorities include retaining residents, preventing skilled worker outflow, and meeting the evolving needs of urban populations. The study presents the development and application of a scenario-based spatial analysis tool for assessing urban environmental quality at a detailed spatial scale within the city of Novosibirsk. Using advanced geoinformatics, GIS techniques, and an expert knowledge base, the tool integrates diverse thematic data layers with user-defined scenarios to compute and visualize… More >

  • Open Access

    ARTICLE

    Integrating Temporal Change Detection and Advanced Hybrid Modeling to Predict Urban Expansion in Jaipur, a UNESCO World Heritage City

    Saurabh Singh1,2, Sudip Pandey3,*, Ankush Kumar Jain1

    Revue Internationale de Géomatique, Vol.34, pp. 899-914, 2025, DOI:10.32604/rig.2025.071156 - 09 December 2025

    Abstract Urban expansion in semi-arid regions poses critical challenges for sustainable land management, ecological resilience, and heritage conservation. Jaipur, India—a United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage City located in a semi-arid environment—faces rapid urbanization that threatens agricultural productivity, fragile ecosystems, and cultural assets. This study quantifies past and projects future land use/land cover (LULC) dynamics in Jaipur to support evidence-based planning. Using the Dynamic World dataset, we generated annual 10-m LULC maps from 2016 to 2025 within the municipal boundary. Temporal change detection was conducted through empirical transition probability analysis, and future… More >

  • Open Access

    ARTICLE

    La dilution urbaine au prisme de l’espace proxémique ; de la discontinuité au continuum des formes urbaines
    Urban Dilution through the Prism of Proxemic Space; from Discontinuity to the Continuum of Urban Forms

    Cyril Enault*

    Revue Internationale de Géomatique, Vol.34, pp. 881-897, 2025, DOI:10.32604/rig.2025.065740 - 09 December 2025

    Abstract Considérée souvent en France comme discontinue, la transition du bâti urbain-rural est largement envisagé comme continue au niveau international. Si la question de la forme urbaine n’est donc, aujourd’hui, plus en suspens du fait des très nombreuses études à l’échelle internationale, la limite urbain périurbain et rural isolé convient d’être néanmoins encore réinterrogée. La notion de proxémique développée dans les années 1970, pourrait permettre une résolution du problème. Utiliser cette notion pour revoir la métrique géographique pourrait permettre de réviser la limite urbain-campagne et raisonner alors sur un espace continu au-delà même des limites du More >

  • Open Access

    REVIEW

    3D LiDAR-Based Techniques and Cost-Effective Measures for Precision Agriculture: A Review

    Mukesh Kumar Verma1,2,*, Manohar Yadav1

    Revue Internationale de Géomatique, Vol.34, pp. 855-879, 2025, DOI:10.32604/rig.2025.069914 - 17 November 2025

    Abstract Precision Agriculture (PA) is revolutionizing modern farming by leveraging remote sensing (RS) technologies for continuous, non-destructive crop monitoring. This review comprehensively explores RS systems categorized by platform—terrestrial, airborne, and space-borne—and evaluates the role of multi-sensor fusion in addressing the spatial and temporal complexity of agricultural environments. Emphasis is placed on data from LiDAR, GNSS, cameras, and radar, alongside derived metrics such as plant height, projected leaf area, and biomass. The study also highlights the significance of data processing methods, particularly machine learning (ML) and deep learning (DL), in extracting actionable insights from large datasets. By More >

  • Open Access

    ARTICLE

    Spatio-Temporal Flood Inundation Dynamics and Land Use Transformation in the Jhelum River Basin Using Remote Sensing and Historical Hydrological Data

    Ihsan Qadir1, Usama Naeem2, Ahmed Nouman3, Aamir Raza4, Jun Wu1,*

    Revue Internationale de Géomatique, Vol.34, pp. 831-853, 2025, DOI:10.32604/rig.2025.069020 - 10 November 2025

    Abstract The Jhelum River Basin in Pakistan has experienced recurrent and severe flooding over the past several decades, leading to substantial economic losses, infrastructure damage, and socio-environmental disruptions. This study uses multi-temporal satellite remote sensing data with historical hydrological records to map the spatial and temporal dynamics of major flood events occurring between 1988 and 2019. By utilizing satellite imagery from Landsat 5, Landsat 8, and Sentinel-2, key flood events were analyzed through the application of water indices such as the Normalized Difference Water Index (NDWI) and the Modified NDWI (MNDWI) to delineate flood extents. Historical… More >

  • Open Access

    ARTICLE

    Predicting Soil Carbon Pools in Central Iran Using Random Forest: Drivers and Uncertainty Analysis

    Shohreh Moradpour1,#, Shuai Zhao2,#, Mojgan Entezari1, Shamsollah Ayoubi3,*, Seyed Roohollah Mousavi4

    Revue Internationale de Géomatique, Vol.34, pp. 809-829, 2025, DOI:10.32604/rig.2025.069538 - 06 November 2025

    Abstract Accurate spatial prediction of soil organic carbon (SOC) and soil inorganic carbon (SIC) is vital for land management decisions. This study targets SOC/SIC mapping challenges at the watershed scale in central Iran by addressing environmental heterogeneity through a random forest (RF) model combined with bootstrapping to assess prediction uncertainty. Thirty-eight environmental variables—categorized into climatic, soil physicochemical, topographic, geomorphic, and remote sensing (RS)-based factors—were considered. Variable importance analysis (via) and partial dependence plots (PDP) identified land use, RS indices, and topography as key predictors of SOC. For SIC, soil reflectance (Bands 5 and 7, ETM+), topography, More > Graphic Abstract

    Predicting Soil Carbon Pools in Central Iran Using Random Forest: Drivers and Uncertainty Analysis

  • Open Access

    ARTICLE

    Some Important Features of the Lambert Equivalent Azimuthal Projection

    Miljenko Lapaine*

    Revue Internationale de Géomatique, Vol.34, pp. 793-808, 2025, DOI:10.32604/rig.2025.066916 - 06 November 2025

    Abstract The paper investigates the properties of the Lambert equivalent azimuthal projection, which is often used in normal aspect in atlases for maps of the northern and southern hemispheres. The field of research is theoretical in nature and assumes a mastery of mathematics because it deals with map projections. The transverse aspect is commonly used for eastern and western hemisphere atlas maps. In addition, the Hammer projection was created from the transverse aspect of that projection. Therefore, if we want to get to know the Hammer projection better, we must first investigate the Lambert equivalent azimuthal… More >

Displaying 1-10 on page 1 of 123. Per Page